Lab Notes for a Scientific Revolution (Physics)

May 24, 2012

Baryons and Confinement; Exact Quantum Yang Mills Propagators; Mass Gap

To all:

I have started work on physics again this last month after two years “sabbatical.”  I am also again working with my friend Andrej Inopin.

In particular, I am touching up a paper that I was working on in 2008 which shows that baryons are simply magnetic charges in a non-Abelian (Yang Mills) gauge theory, and shows how confinement phenomena are a natural outgrowth of the properties of these “magnetic charge baryons.”  This paper is linked at:

https://jayryablon.files.wordpress.com/2012/05/baryon-paper-3-1.pdf

Now, in returning to this paper after several years, I have always known that my equation (3.5) in the above was a “shortcut” to get to the results  afterwards, because it relies upon an analogy from QED and does not fully develop propagators / inverses for Yang-Mills theory.

This is because back in 2008, I did not know how to quantize Yang-Mill theory and obtain exact propagators that embody all of the non-linearity that comes from Yang-Mills.  Nobody knew / knows how to do this.  That is why people still use perturbation theory even though it breaks up the gauge invariance of Yang-Mills, or use lattice gauge theory even though it breaks up Lorentz symmetry and they have to calculate numerically on computers rather than analytically.  These are “compromises” that everybody uses because exact Yang-Mills quantization solutions simply are not known to date.

But in the last several weeks, I returned to this problem that had been a roadblock for me in 2008, and have now solved it!   The link below is the current version of a paper I have written in the last two weeks which contains this solution.

https://jayryablon.files.wordpress.com/2012/05/quantum-yang-mills-3-for-spf.pdf

Sections 2 and 3 in the above just link replace the “shortcut” of (3.5) in the previous link further up this page.  Section 4 shows that the perturbation which is an important object in this theory actually transforms just like a GRAVITATIONAL field.  I write this with the view that this is a possible path to non-Abelian quantum gravity, but am reserving judgment on this and would like to hear other views.  But what I think is unmistakable is that this shows that gauge transformations in the perturbation — which might be reason to doubt using this perturbation to calculate invariant numbers — are equivalent to no more and no less that plain old general coordinate transformations.  In essence, the perturbation combines several dot products which alone are not invariant, but which together, are.

The work in this paper lays the foundation and provides the calculating machinery for solving the “mass gap” problem.  I will continue developing this in the week ahead, but I have enough already that I wanted to share.

February 7, 2008

Lab Note 3, Part 2: Unification of Particle, Nuclear and Atomic Phenomonology

This lab note will be brief.

On April 28, 2007, I posted a paper which went from baryons and confinement to strings to particle phenomenology to atomic physics and deuterons and a whole range of phenomenology including fermion generation replication which appeared to lend itself to a common, underlying explanation based on the work I have previously discussed with respect to baryons and confinement in particular.  The underlying thread throughout, is to connect spacetime symmetry to internal symmetry using the Pauli fermionic exclusion principle.   I am afraid, however, that this paper may have been buried amidst all of the other postings, so I want to specifically call it to your attention, at the link below:

On The Natural Origin of Baryons, Short-Range Mesons, and QCD Confinement, from Maxwell’s Magnetic Equations for a Yang-Mills Field

In the spirit of “Lab Notes” which are a scientific diary of theoretical explorations, I ask you in particular to look at the second half of this paper, starting at section 6.  In football, there is something known as a “Hail Mary” pass where the quarterback throws the ball all the way down the field hoping for a touchdown.  The second half of the above paper is just that.  While certainly speculative, it seems to me that this ties together a very diverse range of observable phenomenology which has not previously been tied together.   It is probably the most audacious piece of physics writing I have done, and I don’t want it to get lost in the shuffle.

So, if nothing comes of it, so be it.  But, it may well be that someone in the end zone will catch this long pass, and physics will come to rest in a different place from where it rests today.  That is why it is so important to take good lab notes!

Create a free website or blog at WordPress.com.