Lab Notes for a Scientific Revolution (Physics)

May 7, 2009

Inferring Electrodynamic Gauge Theory from General Coordinate Invariance

I am presently working on a paper to show how electrodynamic gauge theory can be directly connected to generally-covariant gravitational theory.  In essence, we show how there is a naturally occurring gauge parameter in gravitational gemometrodynamics which can be directly connected with the gauge parameter used in electrodynamics, while at the same time local gauge transformations acting on fermion wavefunctions may be synonymously described as general coordinate transformations acting on those same fermion wavefunctions.

This is linked below, and I will link updates as they are developed.

Inferring Electrodynamic Gauge Theory from General Coordinate Invariance

If you check out sci.physics.foundations and sci.physics.research, you will see the rather busy path which I have taken over the last month to go from baryons and confinement to studying the Heisenberg equation of motion and Ehrenfest’s theorem, to realizing that there was an issue of interest in the way that Fourier kernels behave under general coordinate transformations given that a general coordinate x^u is not itself a generally-covariant four vector.  Each step was a “drilling down” to get at underlying foundational issues, and this paper arrives at the most basic, fundamental underlying level.

Looking forward to your feedback.

Jay

Advertisement

April 4, 2009

Starting a new paper on Baryons and Confinement

Today, I began work on a new paper dealing with the Yang-Mills foundations of baryons and QCD confinement.  The first draft is linked below, and I will provide updates as they develop.

Yang-Mills Foundations of Baryons and Confinement Phenomena

I may get diverted a bit by my US tax filing the next few days, and I am quite busy at work right now so this will mostly be a weekend and after-midnight project, but I do hope to get this paper, which I hope will synthesize many individual insights I have had and subjects I have studied over the past several years, into a something of value for others.

Constructive comments are always appreciated.

Thanks to the Princess and Peter and Ken and Igor and Ben for feedback and insights posted on the various newsgroups.

Jay.

March 22, 2008

A Possible Kaluza-Klein Experiment

It has been suggested — appropriately so — that I consider whether there might be one or more experiments which can be designed to validate or falsify some of the Klauza-Klein results which I have been posting of late. I believe that one possible experiment resides in the non-symmetric energy tensor of trace matter derived in (11.6) of my latest posted paper. Thus, I have added a new section 15 to this paper, and reposted the entire paper, with this new section 15, at Kaluza-Klein Theory and Lorentz Force Geodesics Rev. 6.0 Because this is of particular interest as it may open some new experimental windows, I have posted section 15 below as well. Please note: the specific discussion of the connection between the compactified fifth dimension, and intrinsic spin, is not updated in this paper, and the latest discusssion I have written up on this topic, is at Intrinsic Spin and the Kaluza-Klein Fifth Dimension.

  Section 15: At this juncture, we have enough information to propose an experiment to validate or falsify some of the results derived thus far.  We turn for this purpose to the stress energy tensor of matter (11.6), which we raise into contravariant notation as follows:

\kappa T^{\nu \mu } =-\kappa \left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)+{\textstyle\frac{\sqrt{2} }{2}} \overline{\kappa }g^{5\mu } J^{\nu } =\kappa T^{\mu \nu } _{Maxwell} +{\textstyle\frac{\sqrt{2} }{2}} \overline{\kappa }g^{5\mu } J^{\nu } . (15.1)

The Maxwell tensor T^{\mu \nu } _{Maxwell} =T^{\nu \mu } _{Maxwell} is, of course, a symmetric tensor.  But the added trace matter term g^{5\mu } J^{\nu } is not necessarily symmetric, that is, there is no a priori reason why g^{5\mu } J^{\nu } must be equal to g^{5\nu } J^{\mu } .  The origin of this non-symmetry was discussed earlier in Section 9.

 With an eye toward conducting an experiment, let us now consider (15.1) in the linear approximation of (13.6) where {\rm L}_{QCD} \approx -A^{\beta } J_{\beta } -{\textstyle\frac{1}{4}} F^{\sigma \tau } F_{\sigma \tau } .  In the linear approximation, as used to reach (13.3), (12.11) reduces to g^{5\mu } \approx \overline{\kappa }\left(\frac{\phi ^{5\mu } -{\textstyle\frac{1}{2}} bA^{\mu } }{1+{\textstyle\frac{1}{2}} \overline{\kappa }\phi } \right)\approx -{\textstyle\frac{1}{2}} \overline{\kappa }bA^{\mu } , and (15.1) becomes:

T^{\nu \mu } \approx -\left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)-2J^{\nu } A^{\mu } =T^{\mu \nu } _{Maxwell} -2J^{\nu } A^{\mu } , (15.2)

where we have also used b^{2} =8 and 2\kappa =\overline{\kappa }^{2} , and divided out \kappa .  The transpose of this non-symmetric energy tensor is:

T^{\mu \nu } \approx -\left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)-2J^{\mu } A^{\nu } =T^{\mu \nu } _{Maxwell} -2J^{\mu } A^{\nu } , (15.3)

 Now, it is known that a non-symmetric energy tensor, physically, is indicative of a non-zero spin density.  In particular, using (15.2) and (15.3), the non-symmetry of the energy tensor is related to a non-zero spin density tensor S^{\mu \nu \alpha } according to: [A good, basic discussion of the spin tensor is at http://en.wikipedia.org/wiki/Spin_tensor.]

S^{\mu \nu \alpha } _{;\alpha } =T^{\mu \nu } -T^{\nu \mu } =-2J^{\mu } A^{\nu } +2J^{\nu } A^{\mu } . (15.4)

For such a non-symmetric tensor, the “energy flux” is not identical to the “momentum density, as these differ by (15.4), for \mu =0, \nu =k=1,2,3 and vice versa.  If the spin density S^{\mu \nu \alpha } =0, then  in this special case, (15.4) yields:

J^{\mu } A^{\nu } =J^{\nu } A^{\mu } . (15.5)

So, for S^{\mu \nu \alpha } =0, (15.3) may be written using (15.5) as the explicitly-symmetric tensor:

T^{\mu \nu } \approx -\left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)-J^{\mu } A^{\nu } -J^{\nu } A^{\mu } =T^{\mu \nu } _{Maxwell} -J^{\mu } A^{\nu } -J^{\nu } A^{\mu } . (15.6)

 Now, let’s consider a experiment which is entirely classical.  The T^{0k} “Poynting” components of (15.4), (15.6) represent the energy flux across a two-dimensional area, for a flux of matter which we will take to be a stream of electrons, while the T^{k0} components represent the momentum density.  The proposed experiment, then, will be to fire a stream of a very large number of electrons thereby constituting an electron “wave,” and to detect the aggregate flux of energy across a two-dimensional surface under various spin preparations, in precisely the same manner that one might test the flow of luminous energy across a surface when using light waves rather than electron waves.  Specifically, we propose in test I to fire electrons without doing anything to orient their spins, so that, statistically, the number of electrons flowing through the flux surface with positive helicity is equal to the number with negative helicity and so the spin density is zero, and (15.6) applies.  In test II, we fire electrons, but apply a magnetic field before detecting the flux, to ensure that all of the electrons are aligned to positive helicity.  In this event, the spin density, by design, is non-zero, and one of (15.2) or (15.3) will apply.  In test III, we do the same, but now apply the magnetic field to ensure that all of the electrons have negative helicity, before detecting the flux.

(more…)

Blog at WordPress.com.