# Lab Notes for a Scientific Revolution (Physics)

## March 28, 2008

### Further Considerations on the Energy Tensor: Metric versus Torsion

After reviewing some very helpful discussion on sci.physics.foundations and sci.physics.relativity in the threads I initiated regarding non-symmetric energy tensors and a suggested Kaluza-Klein experiment, and going back to Misner, Thorne and Wheeler’s “Gravitation,” I am starting to shift my viewpoint to be in opposition to the idea of using a non-symmetric (Cartan / Torsion) energy tensor because of the adverse impact this has on formulating a metric theory of gravitation.

There is a non-symmetric energy tensor in equations (15.11) to (15.13) of:

Kaluza-Klein Theory and Lorentz Force Geodesics Rev. 6.0

which is based upon the *non-symmetric* energy tensor of trace matter derived in (11.6).  What I have been turning over, is whether I ought to be comfortable with this result, and my sense runs against it.

However, at the point of original derivation in sections 8-11, there is actually a choice: one can construct the variation of the Lagrangian density of matter with respect to $g_{\mu \nu}$ such that a symmetric tensor will result, or one can choose not to, by creating a symmetric term or not.  This is actually a form of gravitational “symmetry breaking” that occurs in the process of taking the variation of the matter Lagrangian density with respect to the metric tensor.  I think both paths need to be developed, because they lead to on the one hand to a symmetric energy tensor, and on the other to a non-symmetric energy tensor.  In either case, the key term distinguishing this energy tensor from the Maxwell tensor is $J^\mu A^\nu$.

If we impose symmetry on the energy tensor, then the Maxwell tensor will be the $J^u=0$ special case of a broader tensor which includes a $J^\mu A^\nu + J^\nu A^\mu$ term and which applies, e.g., to energy flux densities (Poynting components) $T^{0k}$, $k=1,2,3$ for “waves” of large numbers of electrons.

Then, the experiment becomes — not a test of the torsion tensor — but a test as between an energy tensor with and without torsion.  That is, the experiment as reformulated, becomes a test of metric-style versus Cartan-style theories of gravitation.

Dealing with the currents $J^\mu$ is clear.  Regarding how to deal with the potential $A^\mu$ in doing the experiment, think about a beam of electrons. They of course will all repel, so the beam will emerge conically from the electron gun if nothing is done to force them onto a parallel path. Now, take a circular cross section of electrons from the beam striking an energy flux detector.  One can think of the cross-sectional surface where the electron stream meets the detector as a “disk,” not unlike a charged, flat, frisbee, which is also productively thought about as a dielectric.  I would submit that one can assign a “zero” potential to the center of the cross section, and a varying non-zero potential to the periphery.  That is, if one were to take a circular dielectric disk and fill it with electric charge, then float some positive charge nearby, the positive charge — I believe — would be attracted toward and seat itself at the center of the disk, and so that would be a natural place to define the zero of potential.

This would also mean that regional detections of flux toward the fringes of the detector will be different than toward the center, assuming uniformity of charge distribution, because the energy created by the potentials among the electrons are different in different regions.  So, there is a way to assign potentials even without applying an external voltage, though someone conducting this experiment may want to also apply an external voltage simply to vary the range of experiments.

Now, to the main point: one should do the experiment with random, unpolarized electrons, and then again with spins aligned with and against the direction of propagation, merely to test the symmetric versus non-symmetric energy tensors one to the other.   One will win, the other not.  Metric versus torsion.

I am planning a restructuring of the paper at the above link.  In the near future, I will outline the proposed restruturing — what I would plan to keep and what I plan to change.

Jay.

## March 22, 2008

### A Possible Kaluza-Klein Experiment

It has been suggested — appropriately so — that I consider whether there might be one or more experiments which can be designed to validate or falsify some of the Klauza-Klein results which I have been posting of late. I believe that one possible experiment resides in the non-symmetric energy tensor of trace matter derived in (11.6) of my latest posted paper. Thus, I have added a new section 15 to this paper, and reposted the entire paper, with this new section 15, at Kaluza-Klein Theory and Lorentz Force Geodesics Rev. 6.0 Because this is of particular interest as it may open some new experimental windows, I have posted section 15 below as well. Please note: the specific discussion of the connection between the compactified fifth dimension, and intrinsic spin, is not updated in this paper, and the latest discusssion I have written up on this topic, is at Intrinsic Spin and the Kaluza-Klein Fifth Dimension.

Section 15: At this juncture, we have enough information to propose an experiment to validate or falsify some of the results derived thus far.  We turn for this purpose to the stress energy tensor of matter (11.6), which we raise into contravariant notation as follows: $\kappa T^{\nu \mu } =-\kappa \left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)+{\textstyle\frac{\sqrt{2} }{2}} \overline{\kappa }g^{5\mu } J^{\nu } =\kappa T^{\mu \nu } _{Maxwell} +{\textstyle\frac{\sqrt{2} }{2}} \overline{\kappa }g^{5\mu } J^{\nu }$. (15.1)

The Maxwell tensor $T^{\mu \nu } _{Maxwell} =T^{\nu \mu } _{Maxwell}$ is, of course, a symmetric tensor.  But the added trace matter term $g^{5\mu } J^{\nu }$ is not necessarily symmetric, that is, there is no a priori reason why $g^{5\mu } J^{\nu }$ must be equal to $g^{5\nu } J^{\mu }$.  The origin of this non-symmetry was discussed earlier in Section 9.

With an eye toward conducting an experiment, let us now consider (15.1) in the linear approximation of (13.6) where ${\rm L}_{QCD} \approx -A^{\beta } J_{\beta } -{\textstyle\frac{1}{4}} F^{\sigma \tau } F_{\sigma \tau }$.  In the linear approximation, as used to reach (13.3), (12.11) reduces to $g^{5\mu } \approx \overline{\kappa }\left(\frac{\phi ^{5\mu } -{\textstyle\frac{1}{2}} bA^{\mu } }{1+{\textstyle\frac{1}{2}} \overline{\kappa }\phi } \right)\approx -{\textstyle\frac{1}{2}} \overline{\kappa }bA^{\mu }$, and (15.1) becomes: $T^{\nu \mu } \approx -\left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)-2J^{\nu } A^{\mu } =T^{\mu \nu } _{Maxwell} -2J^{\nu } A^{\mu }$, (15.2)

where we have also used $b^{2} =8$ and $2\kappa =\overline{\kappa }^{2}$, and divided out $\kappa$.  The transpose of this non-symmetric energy tensor is: $T^{\mu \nu } \approx -\left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)-2J^{\mu } A^{\nu } =T^{\mu \nu } _{Maxwell} -2J^{\mu } A^{\nu }$, (15.3)

Now, it is known that a non-symmetric energy tensor, physically, is indicative of a non-zero spin density.  In particular, using (15.2) and (15.3), the non-symmetry of the energy tensor is related to a non-zero spin density tensor $S^{\mu \nu \alpha }$ according to: [A good, basic discussion of the spin tensor is at http://en.wikipedia.org/wiki/Spin_tensor.] $S^{\mu \nu \alpha } _{;\alpha } =T^{\mu \nu } -T^{\nu \mu } =-2J^{\mu } A^{\nu } +2J^{\nu } A^{\mu }$. (15.4)

For such a non-symmetric tensor, the “energy flux” is not identical to the “momentum density, as these differ by (15.4), for $\mu =0$, $\nu =k=1,2,3$ and vice versa.  If the spin density $S^{\mu \nu \alpha } =0$, then  in this special case, (15.4) yields: $J^{\mu } A^{\nu } =J^{\nu } A^{\mu }$. (15.5)

So, for $S^{\mu \nu \alpha } =0$, (15.3) may be written using (15.5) as the explicitly-symmetric tensor: $T^{\mu \nu } \approx -\left(F^{\mu \tau } F^{\nu } _{\tau } -{\textstyle\frac{1}{4}} g^{\mu \nu } F^{\sigma \tau } F_{\sigma \tau } \right)-J^{\mu } A^{\nu } -J^{\nu } A^{\mu } =T^{\mu \nu } _{Maxwell} -J^{\mu } A^{\nu } -J^{\nu } A^{\mu }$. (15.6)

Now, let’s consider a experiment which is entirely classical.  The $T^{0k}$ “Poynting” components of (15.4), (15.6) represent the energy flux across a two-dimensional area, for a flux of matter which we will take to be a stream of electrons, while the $T^{k0}$ components represent the momentum density.  The proposed experiment, then, will be to fire a stream of a very large number of electrons thereby constituting an electron “wave,” and to detect the aggregate flux of energy across a two-dimensional surface under various spin preparations, in precisely the same manner that one might test the flow of luminous energy across a surface when using light waves rather than electron waves.  Specifically, we propose in test I to fire electrons without doing anything to orient their spins, so that, statistically, the number of electrons flowing through the flux surface with positive helicity is equal to the number with negative helicity and so the spin density is zero, and (15.6) applies.  In test II, we fire electrons, but apply a magnetic field before detecting the flux, to ensure that all of the electrons are aligned to positive helicity.  In this event, the spin density, by design, is non-zero, and one of (15.2) or (15.3) will apply.  In test III, we do the same, but now apply the magnetic field to ensure that all of the electrons have negative helicity, before detecting the flux.

Create a free website or blog at WordPress.com.