Lab Notes for a Scientific Revolution (Physics)

June 15, 2013

Slides from my first Physics Lecture, and a New Draft Paper Summarizing the Experimental Points of Contact which Affirm my Work

This past week I gave my first physics lecture on the research in my recent four published papers establishing that proton and neutrons are actually a particular type of magnetic monopole (based on a theory called Yang-Mills because those are the names of the two fellows who invented its foundations).  In the lecture, I consolidated all four of my papers totaling about 140 pages into a 70 minute lecture (50 minutes talk, 20 minutes Q&A discussion) and 64 slides which you can download from Physics Lecture Slides.

It would probably take someone a couple of weeks to read through and thoroughly understand my four papers.   The slides were designed to allow someone to assimilate the same information within a couple of hours.  Please take a look.

Also, I prepared a new paper which you may read at Fitting the 2H, 3H, 3He, 4H Binding Energies 3  which in ten pages lays out the multiple relationships I have found which very clearly connect to experimental data that had never before been explained.  This is the “tip of the iceberg” in terms of the multiple ways in which nature herself validates my theoretical work at the parts-per-million level.   My hope is that people in the physics community will see these results, realize that there is something real here, and then take the time to backtrack to understand the theoretical foundations that got me to that point.  A sort of “inversion” of my work to lead with the experimental results in order to catalyze interest.  Everything in this paper by the way, is simple arithmetic (as in, numbers calculated and compared to other numbers), and about the only complexity is that you need to understand a tiny bit about matrix multiplication (like that the “Trace” of a square matrix is just the sum of all the entries long its upper left to lower right diagonal).  If you do not want to even sort through the matrix stuff, then just look at equations (14) through (20).  These are pure numbers, and you will see how close I get to the experimental data each and every time.  Nobody has ever before explained this experimental data with such high precision!

People, I am usually careful not to toot too loudly about my work.  But I have to say that this is real, it is fundamental, and it will revolutionize nuclear and particle theory.  The question is no longer if, but when.  The discoveries have been made and they are in print and all they need is attention from the right places.  My “lab notes” and related work will soon spark a “scientific revolution” toward which I have been working for over 40 years.  Real results in hand, I am now doing all that I can to make that happen sooner rather than later.  I welcome any help or support my friends can provide in making that happen.


May 4, 2013

My four recent peer-reviewed papers about Magnetic Monopole Baryons are now all published and online

I wanted to let you know that my recent second, third and fourth peer-reviewed papers were all published on April 30.  These papers, in order of logical development, are:
2)  J. Yablon, “Predicting the Binding Energies of the 1s Nuclides with High Precision, Based on Baryons which Are Yang-Mills Magnetic Monopoles,” Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 70-93. doi: 10.4236/jmp.2013.44A010.
3)  J. Yablon, “Grand Unified SU(8) Gauge Theory Based on Baryons which Are Yang-Mills Magnetic Monopoles,” Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 94-120. doi: 10.4236/jmp.2013.44A011.
4)  J. Yablon, “Predicting the Neutron and Proton Masses Based on Baryons which Are Yang-Mills Magnetic Monopoles and Koide Mass Triplets,” Journal of Modern Physics, Vol. 4 No. 4A, 2013, pp. 127-150. doi: 10.4236/jmp.2013.44A013.
The “Special issue on High Energy Physics” in which the foregoing all appear is at:
Also, the very first paper in which is is all rooted was published a couple of months ago, but finally went online about ten days ago.  This paper may be downloaded at:
1)  Yablon, J. R., Why Baryons Are Yang-Mills Magnetic Monopoles, Hadronic Journal, Volume 35, Number 4, 401-468 (2012)
If you want to quickly understand the original paper #1, which is 67 pages, I suggest that you start by reading the introductory section in paper #2, which is a three page encapsulation of paper #1.  Overall, this introductory section of paper #2 is the best point entry to understanding my recent research.  I am happy to answer questions or engage in discussions online.
Best to all,

March 17, 2013

My first published paper “Why Baryons Are Yang-Mills Magnetic Monopoles” at Hadronic Journal, Volume 35, Number 4, 399-467 (2012)

My first paper “Why Baryons Are Yang-Mills Magnetic Monopoles” has now been published in Hadronic Journal, Volume 35, Number 4, 399-467 (2012). Though the Hadronic Journal has not yet put this issue online, I have a hardcopy of this and have uploaded a scan at the link below:

Hadronic Journal, Volume 35, Number 4, 399-467 (2012)

As I have advised on some earlier blog entries, I have two more accepted papers which will be published next month (April 2013) in the Journal of Modern Physics, Special Issue on High Energy Physics.


December 31, 2012

New Paper: Predicting the Binding Energies of the 1s Nuclides with High Precision, Based on Baryons which are Yang-Mills Magnetic Monopoles

Dear Friends:
I wanted to let you all know that I just posted a new paper, which you can review at the link below:
The abstract is as follows:
We employ the thesis that baryons are Yang-Mills magnetic monopoles to predict the binding energies of the alpha 4He nucleus to less than four parts in one million, of the 3He helion nucleus to less than four parts in 100,000, and of the 3H triton nucleus to less than seven parts in one million, all in AMU.  Of special import, we exactly relate the neutron–proton mass difference – which pervades all aspects of nuclear physics and beta decay – to a function of the up quark, down quark, and electron masses, which in turn enables us to predict the binding energy for the 2H deuteron nucleus most precisely of all, to just over 8 parts in ten million.  The thesis that Baryons are Yang-Mills magnetic monopoles thereby appears to have ample, indeed irrefutable empirical confirmation, establishes a basis for finally “decoding” the mass of known data regarding nuclear masses and binding energies, and may lay the foundation for technologically realizing the theoretical promise of nuclear fusion.
I have also submitted this for journal publication, and hope that this will become my second journal-published paper.  The first one as I have advised previously has already been accepted and will be released any day now.
I welcome your comments, as always.
Time to go party!  Happy new year to all!

Create a free website or blog at