Lab Notes for a Scientific Revolution (Physics)

April 22, 2012

Back to Blogging, Uploaded a paper I wrote in 1986 about Preonic Grand Unification

It has been almost 3 years since my last Blog post.  Much of my time has been diverted into a condo hotel project in Longboat Key Florida, and the focus I need to do good physics has been impossible to come by.  Then, the other day, Ken Tucker, a frequent participant at sci.physics.foundations, emailed me about some new research showing that electrons have constituent substructure.  That brought me back immediately to the half a year I spent back in 1986 developing a 200-page paper about a preonic substructure for quarks and leptons, which culminated six years of study from 1980 to 1986.  I finished that paper in August 1986, and then took an 18 year hiatus from physics, resuming again in late-2004.

Ken’s email motivated me to dig out this 1986 paper which I manually typed out on an old-fashioned typewriter, scan it into electronic form, and post it here.  Links to the various sections of this paper are below.  This is the first time I have ever posted this.

Keep in mind that I wrote this in 1986.  I tend to study best by writing while I study, and in this case, what I wrote below was my “study document” for Halzen and Martin’s book “Quarks and Leptons” which had just come out in 1984 and was the first book to pull together what we now think of as modern particle physics and the (then, still fairly new) electroweak unification of Weinberg-Salam.

What is in this paper that I still to this day believe is fundamentally important, and has not been given the attention it warrants, is the isospin redundancy between (left-chiral) quarks and leptons.  This to me is an absolute indication that these particles have a substructure, so that a neutrino and an up quark both have contain the same “isospin up” preon, and an electron and a down quark both contain the same “isospin down” preon.  Section 2.11 below is the key section, if you want to cut to the chase with what I was studying some 26 years ago.  I did post about this in February 2008 at, though that post merely showed a 1988 summary I had assembled based on my work in 1986, at the behest of the late Nimay Mukhopadhyay, who at the time was teaching at RPI and had become a good friend and one of my early sources of encouragement.  This is the first time I am posting all of that early up-to-1986 work, in complete detail.

Lest you think me crazy, note that seventeen years later, G. Volovik, in his 2003 book “The Universe in a Helium Droplet,” took a very similar tack, see Figure 12.2 in this excerpt: Volovik Excerpt on Quark and Lepton Preonic Structure.

The other aspect of this 1986 paper that I still feel very strongly about, is taking the Dirac gamma-5 as a fifth-dimension indicator.  I know I have been critiqued by technical arguments as to why this should not be taken as a sign of a fifth dimension, but this fits seamlessly with Kaluza Klein which geometrizes the entirely of Maxwell’s theory and is still the best formal unification of classical electromagnetism and gravitation ever developed.  For those who maintain skepticism of Kaluza-Klein and ask “show me the fifth dimension,” just look to chirality which is well-established experimentally.  Why do we have to assume that this fifth dimension will directly manifest in the same way as space and time, if its effects are definitively observable in the chiral structure of fermions?  Beyond this, I remain a very strong proponent of the 5-D Space-Time-Matter Consortium, see, which regards matter itself as the most direct manifestation of a fifth physical dimension.  Right now, most folks think about 4-D spacetime plus matter.  These folks correctly think about 5-D space-time-matter, no separation.  And Kaluza-Klein, which historically predated Dirac’s gamma-5, is the underpinning of this.

After my hiatus of the past couple of years, I am going to try in the coming months to write some big-picture materials about physics, which will pull together all I have studied so far in my life.  I am thinking of doing a “Physics Time Capsule for 2100” which will try to explore in broad strokes, how I believe physics will be understood at the end of this century, about 88 years from now.

Anyway, here is my entire 1986 paper:

Preonic Grand Unification and Quantum Gravitation: Capsule Outline and Summary

Abstract and Contents

Section 1.1: Introduction

Section 1.2: Outline and Summary

Section 2.1: A Classical Spacetime Introduction to the Dirac Equation, and the Structure of Five-Dimensional Spacetime with a Chiral Dimension

Section 2.2: Particle/Antiparticle and Spin-Up/Spin-Down Degrees of Quantum Mechanical Freedom in Spacetime and Chirality, Gauge Invariance and the Dirac Wavefunction

Section 2.3: Determination and Labeling of the Spinor Eigensolutions to the Five-Dimensional Dirac Equation, and the High and Low Energy Approximations

Section 2.4: The Fifth-Dimensional Origin of Left and Right Handed Chiral Projections and the Continuity equation in Five Dimensions: Hermitian Conjugacy, Adjoint Spinors, and the Finite Operators Parity (P) and Axiality (A)

Section 2.5: Conjugate and Transposition Symmetries of the Dirac Equation in Five Dimensions, the Finite Operators for Conjugation (C) and Time Reversal (T), and Abelian Relationships Among C, P, T and A

Section 2.6: Charge Conjugation, and the Definitions and Feynman Diagrams for “Electron” and “Positron” Spinors

Section 2.7: Simple Unpolarized s,t,u Scattering Channels with a Covariant Propagator, and the Covariant (Real and Virtual) Polarization States of Massive and Massless Vector Bosons

Section 2.8: Prelude to Preons: The Spinor Decomposition of Four Real Spacetime Dimensions ct,x,y,z into Two Complex Spinor Dimensions Using the Covariant Polarization States of Vector Bosons

Section 2.9: Introduction to Isospin Preons in Electroweak Theory: The Preonic Decomposition of Four Real Electroweak Bosons A, W+, W-, Z into Two Complex Preons Denoting “Isospin Up” and “Isospin Down”

Section 2.10: Summarization of Prior Discussion, and on the Fundamental Importance of Preons in Particle Physics

Section 2.11: The Four-Preon Flavor SU(4) Unification of the Electromagnetic, Weak and Colorless Strong Interactions Excluding Quantum Gravitation; and the Colorless Flavor Classification of Left Handed Real Fermion and Boson Chiral Projections, for a Single Fermion Generation

Section 2.12: The Four-Preon Flavor SU(4)xU(1) Unification of Electromagnetic, Weak, Colorless Strong and Quantum Gravitational Interactions; and the Colorless Flavor Classification of Left and Right Handed Real Fermion and Boson Chiral Projections, for a Single Fermion Generation

Addendum to Section 2.12

Section 2.13: The Six-Preon Unification of Flavor SU(4)xU(1) with High Energy Color SU(4)xU(1) and Two Overlapping Degrees of Freedom; the Flavor and Color Classification of Real Fermions and Vector Bosons for a Single Generation; and the Derivation of Electroweak and Strong/Hyperweak Massless and Massive Neutral Current Vector Bosons

Section 2.14: On the Replication of Fermion Generations: Four Generational Grand Unification with Eighteen Preons and Nine Independent Flavor/Color/Generation Degrees of Freedom, and a Preonic Discussion of Mesons and Meson Decay

References and Bibliography

February 6, 2008

Lab Note 2, Part 2: Gravitational and Inertial Mass, and Electrodynamics as Geometry, in 5-Dimensional Spacetime

(You may obtain a PDF version of this lab note at Electrodynamic Geodesics) Note: See also Part 3 of this Lab Note, Gravitational and Electrodynamic Potentials, the Electro-Gravitational Lagrangian, and a Possible Approach to Quantum Gravitation, which contains further development.

1.  Introduction  It has been understood at least since Galileo’s refutation of Aristotle which legend situates at the Leaning Tower of Pisa, that heavier masses and lighter masses similarly-disposed in a gravitational field will accelerate at the same rate and reach the ground after identical times have elapsed.  Physicists have come to describe this with the principle that the “gravitational mass” and the “inertial mass” of any material body are “equivalent.”  As a material body becomes more massive and so more-susceptible to the pull of a gravitational field (back when gravitation was viewed as action at a distance), so too this increase in massiveness causes the material body in equal measure to resist the gravitational pull.  By this equivalence, the result is a “wash,” and so with the neglect of any air resistance, all the bodies accelerate and fall at the same rate.  (The other consequence of Galileo’s escapade, is that it strengthened the role of experimental testing, in relation to the “pure thought” upon which Aristotle had relied to make the “obvious” but untested and in fact false argument that heavy objects should fall faster.  In this way, it spawned the essence of what we today know as the scientific method which remains a dynamic blend of thought and creativity, with experience and cold, hard numbers derived from measurement of masses, lengths, and times.)

  Along his path to developing the General Theory of Relativity (GTR), Albert Einstein made a brief stop in 1911 in an imaginary elevator, to conduct a gedanken in which he concluded that the physical experience of an observer falling freely in a gravitational field before terminally hitting the ground is no different from what was commonly thought of as Newton’s inertial motion in which a body in motion remained in motion unless acted upon by a “force.”  (GTR later showed that this was not quite true, the “asterisk” to this insight arising from the so-called tidal forces.)  And, he concluded that the force one feels standing on the floor of an elevator in free fall to which a constant force is then applied, is no different from the force one feels when standing on the surface of the earth.

  The General Theory of Relativity, in the end, captured inertial motion and its close cousin of free-fall motion in a gravitational field, in the most elegant way, as simple geodesic motion in a curved geometry along geodesic paths which coincide precisely with the paths one observes for bodies moving under gravitational influences.  This was a triumph of the highest order, as it placed gravitational theory on the completely-solid footing of Riemannian geometry, and became the “gold standard” against which all other physical theories are invariably measured, even to this day.  (“Marble and wood” is another oft-employed analogy.)

  However, the question of “absolute acceleration,” that is, of an acceleration which is not simply a geodesic phenomenon of unimpeded free fall through a swathe carved out by geometry, but rather one in which an observer actually “feels” a “force” which can be measured by a “weight scale” in physical contact between the observer and that body which applies the force, is in fact not resolved by GTR.  To this day, it is hotly-debated whether or not there is such a thing as “absolute acceleration.”  Surely, the forces we feel on our bodies in elevators and cars and standing on the ground are real enough, but the question is whether there is some way to understand these forces — which are impediments to what would otherwise be our own geodesic free fall motion in spacetime under the influence of gravity and nothing more — as geodesic forces in their own right, simply of a different, supplemental, and perhaps more-subtle character than the geodesics of gravitation.  That is the central question to be examined in this lab note. (more…)

Blog at