Lab Notes for a Scientific Revolution (Physics)

May 7, 2009

Inferring Electrodynamic Gauge Theory from General Coordinate Invariance

I am presently working on a paper to show how electrodynamic gauge theory can be directly connected to generally-covariant gravitational theory.  In essence, we show how there is a naturally occurring gauge parameter in gravitational gemometrodynamics which can be directly connected with the gauge parameter used in electrodynamics, while at the same time local gauge transformations acting on fermion wavefunctions may be synonymously described as general coordinate transformations acting on those same fermion wavefunctions.

This is linked below, and I will link updates as they are developed.

Inferring Electrodynamic Gauge Theory from General Coordinate Invariance

If you check out sci.physics.foundations and sci.physics.research, you will see the rather busy path which I have taken over the last month to go from baryons and confinement to studying the Heisenberg equation of motion and Ehrenfest’s theorem, to realizing that there was an issue of interest in the way that Fourier kernels behave under general coordinate transformations given that a general coordinate x^u is not itself a generally-covariant four vector.  Each step was a “drilling down” to get at underlying foundational issues, and this paper arrives at the most basic, fundamental underlying level.

Looking forward to your feedback.

Jay

Advertisements

May 8, 2008

How Precisely can we Measure an Electron’s Heisenberg Uncertainty? (or, How Certain is Uncertainty?)

   In a May 24 post Heisenberg Uncertainty and Schwinger Anomaly: Two Sides of the Same Coin?, I set forth the hypothesis that the anomalous magnetic moment first characterized by Schwinger, may in fact be a manifestation of the Heisenberg uncertainty relationship, and in particular, that the excess of the uncertainty over \hbar/2 may in fact originate from the same basis as the excess of the intrinsic spin magnetic moment g-factor g, over the Dirac value of 2.  This hypothesis is most transparently written as \Delta x\Delta p=\frac{\left|g\right|}{2} \frac{\hbar }{2} =\left(1+\frac{\alpha}{2\pi } +\ldots \right)\frac{\hbar }{2} , where \alpha is the running electromagnetic coupling for which \alpha \left(\mu \right)\to 1/137.036 at low probe energy \mu .  I also pointed out that a crucial next step was to employ a calculation similar to that shown at http://en.wikipedia.org/wiki/Uncertainty_principle#Wave_mechanics, but for a non-Gaussian wavefunction.

   I have now concluded a full calculation along these lines, of the precise uncertainty associated with a particle wavefunction of the general form \psi (x)=Ne^{-\frac{1}{2} A'x^{2} +B'x-V'\left(x\right)} .  (The primes are a convenience used in calculation where we define A\equiv A'+A'*, etc. when calculating expected values, to take into account the possibility of the wavefunction parameters being imaginary.)  While I refer to V'\left(x\right) as an “intrinsic potential,” it is perhaps better to think about this simply as an unspecified, completely-general polynomial in x, which renders the wavefunction completely general.  I have linked an updated draft of my paper which includes this calculation in full and applies it to the hypothesis set forth above, at Heisenberg Uncertainty and the Schwinger Anomaly. While the calculation is lengthy (and took a fair bit of effort to perform, then cross-check), the essence of what is contained in this paper can be summarized quite simply.  So I shall lay out a brief summary below, using the equation numbers which appear in the above-linked paper.

   The essence of the results demonstrated in this paper is as follows.  Start with the generalized non-Gaussian wavefunction:

\psi (x)=Ne^{-\frac{1}{2} A'x^{2} +B'x-V'\left(x\right)}   (4.1)

Calculate its uncertainty by calculating its Fourier transform \psi (p) (see (6.1)), by calculating each of its variances (\Delta x)^2 (5.4) and (\Delta p)^2 (7.4), and then by multiplying these together and taking the square root to arrive at the uncertainty.  The calculation is lengthy but straightforward, and it leads to the bottom line result:

 \Delta x\Delta p=\frac{\hbar }{2} \sqrt{1-2A'\left(\frac{dV'}{dB'} \right)^{2} +4B'\frac{dV'}{dB'} } =\frac{\hbar }{2} \sqrt{1-4A'V'\frac{d^{2} V'}{dB'^{2} } +4V'} .   (8.5)

   It is important to emphasize that (8.5) is a mathematical result that is totally independent of the hypothesized relationship of the uncertainty to the intrinsic spin.  So, if you ever been dissatisfied with the inequality of the Heisenberg relationship \Delta x\Delta p\ge {\tfrac{1}{2}} \hbar and wondered what the exact uncertainty is for a given wavefunction, you will find this calculated with precision in sections 4 through 8, and the answer is (8.5) above.  The upshot is that (8.5) above is the precise uncertainty for a wavefunction (4.1) with A’, B’ and V’ all real.  We cannot give a position and momentum with precision, but we can give an uncertainty with precision.  The reasons for having A’, B’ and V’ be real are developed in the paper, but suffice it to say that A’, B’ real is necessary to avert a divergent uncertainty, and if V’ were imaginary rather than real, the uncertainty would always be exactly equal to \hbar/2 .

   Now, with the result (8.5) in hand, we return to the original hypothesis which, if it is true, would require that:

\frac{\Delta x\Delta p}{\hbar /2} =\sqrt{1+4B'\frac{dV'}{dB'} -2A'\left(\frac{dV'}{dB'} \right)^{2} } =\sqrt{1+4V'-4A'V'\frac{d^{2} V'}{dB'^{2} } } =\frac{\left|g\right|}{2} =1+\frac{a}{2\pi } +\ldots    (9.1)

   Using the series expansion for \sqrt{1+x} , we then make the connection:

V'\equiv \alpha /4\pi     (9.5)

   Now, it behooves us to return to the wavefunction (4.1), and use (9.5) to write: 

\psi (x)=Ne^{-\frac{1}{2} A'x^{2} +B'x-\frac{\alpha }{4\pi } } ,    (9.6) 

and to rewrite the uncertainty relationship (9.1) as:

\frac{\Delta x\Delta p}{\hbar /2} =\sqrt{1+\frac{1}{\pi } B'\frac{d\alpha }{dB'} -\frac{1}{8\pi ^{2} } A'\left(\frac{d\alpha }{dB'} \right)^{2} } =\sqrt{1+\frac{\alpha }{\pi } -A'\frac{\alpha }{4\pi ^{2} } \frac{d^{2} \alpha }{dB'^{2} } } =\frac{\left|g\right|}{2} =1+\frac{\alpha }{2\pi } +\ldots (9.7)

   Now, let’s get directly to the point: an electron with the wavefunction (9.6), with A' and B' real, will have the uncertainty relationship (9.7), period.  For \alpha =1/137.036, the leading uncertainty term \sqrt{1+\frac{\alpha }{\pi } } =1.00116073607, while the leading anomaly term 1+\frac{\alpha }{2\pi } =1.00116140973.  These two terms differ by just under 7 parts in 10^{-7} .  Therefore, we can state the following:

   TheoremFor a wavefunction \psi (x)=Ne^{-\frac{1}{2} A'x^{2} +B'x-\frac{\alpha }{4\pi } } with A' and B' real, the uncertainty ratio \frac{\Delta x\Delta p}{\hbar /2} , to leading order in \alpha , differs from the intrinsic Schwinger g-factor g/2 by less than 7 parts in 10^{-7} .

   We have stated this as a theorem, because this is a simple statement of fact, and involves no interpretation or hypothesis whatsoever.  However, in order to sustain the broader hypothesis

\Delta x\Delta p=\frac{\left|g\right|}{2} \frac{\hbar }{2} \ge \frac{\hbar }{2} ,   (3.4)

we do need to engage in some interpretation.

   First, we define (9.6) as the intrinsic wavefunction of a ground state electron with no orbital angular momentum and no applied external potential.  And, we define (9.7) as the intrinsic uncertainty of this intrinsic wavefunction.  Not every electron will have this wavefunction or this uncertainty or this g-factor, but this wavefunction becomes the baseline electron wavefunction from which any variation is due to extrinsic factors, such as possessing orbital angular momentum or being placed into an external potential, for example, that of a proton.  Thus, our hypothesis (3.4) is a hypothesis about the intrinsic uncertainty associated with the intrinsic wavefunction, and it says that:

   Reformulated HypothesisThe intrinsic uncertainty associated with the intrinsic electron wavefunction is identical with the intrinsic g-factor of the anomalous magnetic moment.

   The final section 10 of this draft paper linked above, is in progress at this time.  What I am presently trying to do, is make some sense of what appears to be a “new” type of g-factor \left|g_{{\rm ext}} \right|, emanating from an extrinsic potential (polynomial) V_{{\rm ext}}  in the wavefunction:

\psi (x)=Ne^{-\frac{1}{2} A'x^{2} +B'x-V_{int} \left(x\right)-V_{{\rm ext}} \left(x\right)} =Ne^{-\frac{1}{2} A'x^{2} +B'x-\frac{\alpha }{4\pi } -V_{{\rm ext}} \left(x\right)}    (10.1)

This new g-factor is defined in (10.2), and is isolated in (10.3) as such:

\begin{array}{l} {\frac{\left|g_{{\rm ext}} \right|}{2} =\sqrt{1+\frac{1}{\pi } B'\frac{d\alpha +4\pi dV_{{\rm ext}} }{dB'} -\frac{1}{8\pi ^{2} } A'\left(\frac{d\alpha +4\pi dV_{{\rm ext}} }{dB'} \right)^{2} } -\sqrt{1+\frac{1}{\pi } B'\frac{d\alpha }{dB'} -\frac{1}{8\pi ^{2} } A'\left(\frac{d\alpha }{dB'} \right)^{2} } } \\ {\quad \quad =\sqrt{1+\frac{\alpha +4\pi V_{{\rm ext}} }{\pi } -A'\frac{\alpha +4\pi V_{{\rm ext}} }{4\pi ^{2} } \frac{d^{2} \alpha +4\pi d^{2} V_{{\rm ext}} }{dB'^{2} } } -\sqrt{1+\frac{\alpha }{\pi } -A'\frac{\alpha }{4\pi ^{2} } \frac{d^{2} \alpha }{dB'^{2} } } } \end{array}.   (10.3)

In section 10, I have provided my “first impression” of where this new g-factor may fit in, in relation to the Paschen-Back effect, but would be interested in the thoughts of the reader regarding what to make of the above g-factor (10.3) and where it might fit into the “scheme of things.” 

Thanks for listening, and for your thoughts.

Jay.

May 1, 2008

Heisenberg Uncertainty and Schwinger Anomaly Continued: Draft Paper

I have been writing a paper to rigorously develop the hypothesis I presented last week, in a post linked at Heisenberg Uncertainty and Schwinger Anomaly: Two Sides of the Same Coin?.  I believe there is enough developed now, and I think enough of the kinks are now out, so you all may take a sneak preview.  Thus, I have linked my latest draft at:

Heisenberg Uncertainty and the Schwinger Anomaly

Setting aside the hypothesized connection between the magnetic anomaly and uncertainty, Sections 4 through 7, which have not been posted in any form previously, stand completely by themselves, irrespective of this hypothesis.  These sections are strictly mathematical in nature, and they provide an exact measure for how the uncertainty associated with a wavefunction varies upwards from \hbar/2  as a function of the potential, and the parameters of the wavefunction itself.  The wavefunction employed is completely general, and the uncertainty relation is driven by a potential V .

This is still under development, but this should give you a very good idea of where this is headed.

Of course, I welcome comment, as always.

Best regards,

Jay.

Blog at WordPress.com.