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Abstract

We demonstrate that Yang-Mills Magnetic Monopoles naturally
confine their gauge fields, naturally contain three colored fermions in a color
singlet, and that mesons also in color singlets are the only particles they are
allowed to emit or absorb. SU(3)c OCD as it has been extensively studied
and confirmed is understood in broader context, with no contradiction, to be a
consequence of baryons being Yang-Mills magnetic monopoles. Protons and
neutrons are naturally represented in the fundamental representation of this
group. We use the t’Hooft monopole Lagrangian with a Gaussian ansatz for
Jermion wavefunctions to demonstrate that these monopoles can be made to
interact only at very short range as is required for nuclear interactions, and
we establish topological stability following symmetry breaking from an SU(4)
group using the B-L (baryon minus lepton number) generator. Finally, the
mass of the electron is accurately predicted based on the masses of the up and
down quarks to about 3% from the experimental mean for the quark masses,
and confinement of quarks occurs energetically via fantastically strong
negative binding energies that accord very well with experimental nuclear
data. All of this makes Yang-Mills magnetic monopoles worthy of serious
consideration and further development as baryons.

Copyright © 2012 by Hadronic Press, Inc., Palm Harbor, FL. 34682-1577, USA
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Introduction and Summary

The thesis of this paper is simple: magnetic monopole densities which
come into existence in a non-Abelian Yang-Mills gauge theory of non-
commuting fields are synonymous with baryon densities. Baryons, including
the protons and neutrons which form the vast preponderance of matter in the
universe, are Yang-Mills magnetic monopoles!  Conversely, magnetic
monopoles, long pursued since the time of Maxwell, have always been hiding
in plain sight as baryons.

We first show how Yang-Mills magnetic monopoles naturally confine
their gauge fields for the same formal reasons that there are no magnetic
monopoles in Abelian gauge theories (section 1). When we replace the gauge
fields of a Yang-Mills magnetic monopole with associated currents via an
inverse relation G,=1_J° based on Maxwell’s classical chromoelectric

charge equation J"=0,F* and then introduce fermion fields via currents

J¥ =yTy"y, we find that these magnetic monopoles naturally contain three

fermions and associated propagators (sections 2 and 3). After showing some
ways in which these propagators may be mathematically expanded (section 4),
we employ Fermi-Dirac statistics to require that each of the three fermions
contained in this magnetic monopole system must possess unique quantum
numbers, and this compels the introduction of SU(3)c QCD. We thus uncover
a natural system containing three colored quarks which has the precise
antisymmetric color wavefunction R[G,B]+G{B,R]+B[R, G] expected of a
baryon, and which passes through its closed surfaces objects with the

symmetric wavefunction configuration RR+ GG + BB expected of a meson.
Thus, we naturally arrive at all the required features of QCD including three
valence quarks and gluons and quark-anti-quark pairs (mesons). SU(3)c QCD
as it has been extensively studied and confirmed is thereby understood in
broader context, with no contradiction, to be a natural consequence of
baryons being Yang-Mills magnetic monopoles (section 5).

These magnetic monopoles, however, cannot be made stable with the
gauge group SU(3) alone, and will vanish unless one employs a product group
SU3)xU(1) with a U(1) generator for which the trace in non-vanishing. This
leads us to obtain the required SU(3)xU(1) from a larger group SU4) via
spontaneous symmetry breaking, to both ensure renormalizability and provide
topological stability (section 6). Close consideration of this SU(4) group
reveals that its 4° generator can naturally represent the difference between
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baryon number and lepton number, B—L, and that the SU(3) subgroup
provides a natural fundamental representation for protons and for neutrons
(section 7) which emerge as distinct entities following spontaneous symmetry
breaking (section 8).

The t'Hooft [1] and Polyakov [2] model may be used without
alteration to specify the dynamics of this magnetic monopole system which
includes protons and neutrons. However, rather than apply an ansatz
G, ZE,uabbe(r) to the spin 1 gauge fields to determine radial behaviors, we

apply a Gaussian ansatz y(r)=u(p)(ak)™>*e”2=n""%" a5 in [3] to the spin ¥
fermion fields. Because Gaussians are well-behaved and easily integrable, the
monopoles vanish at the boundaries, have finite, calculable energies, and are
indeed stable (section 9). Moreover, unlike the known monopoles which all
exhibit inverse square-law field strengths, monopoles based on the Gaussian
ansatz from [3] interact only at extremely short range, which is precisely what
is to be expected and is experimentally observed for baryons such as protons
and neutrons (section 10).

Finally, integrating the energy tensor of these magnetic monopoles
over an entire spatial volume d’x with all gauge field interactions and vacuum
effects turned off (zero perturbation) allows us to obtain expressions for the
“uncovered” proton and neutron mass as a function of the up and down
“current quark” masses. For experimental validation we show how the
observed electron mass m,=0.510998928 MeV may be predicted from the
2012 PDG values of the up and down quark masses m,, mg, not only within
experimental errors, but with only a 3% difference from the mean
experimental data which itself has a spread about the mean of about 20% for
the down mass and 50% for the up mass. Specifically, it is predicted that
m, =3(m, —m,_)/(2z)7, with the (2z)' divisor directly emergent from three-
dimensional Gaussian integration (section 11). The “uncovered” masses of
the proton and neutron turn out to be more than 80% smaller than the total
mass of the three quarks that they contain. This is understood as being due to
a fantastically strong binding energy which confines the quarks. Moreover,
latent (available) binding energies B for the proton and neutron are predicted
to be B, =7.640679 MeV and B, =9.812358 MeV , which accords well with

empirical per-nucleon binding data for many nuclei and provides a basis to
better understand nuclear bonding and fusion. Finally, it is shown how
nuclear binding is intimately related to quark confinement, with extremely
tight empirical data concurrence (section 12).
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1. Yang-Mills Magnetic Monopoles Naturally Confine their Gauge Fields
through Spacetime Geometry

First, we demonstrate how Yang-Mills magnetic monopoles naturally
confine their gauge fields. We use the language of differential forms, and
assume the reader has sufficient familiarity with this so no tutorial
explanations are required.

In an Abelian (commuting field) gauge theory such as QED, the field
strength tensor F is specified in relation to the vector potential gauge field
(e.g., photon) A according to F=dA. The magnetic monopole source density P
is then specified classically (for high-action §(p)= Id“xf((p) >> i where the

Euler Lagrange equation may be applied) by the classical field equation
P=dF=ddA=0. This makes use of the geometric law that the exterior
derivative of an exterior derivative is zero, dd=0. In integral form, this

becomes mP = ”IdF = ”Idd(; = ﬁF = ﬁdA =0. All of the foregoing “zeros”

are what tell us that there are no magnetic monopoles in an Abelian gauge
theory such as QED. This absence of magnetic monopole charges at all
attainable experimental energies is well borne out in the 140 years since James
Clerk Maxwell published his 1873 A Treatise on Electricity and Magnetism.

In a non-Abelian (non-commuting field) Yang-Mills gauge theory such
as QCD, the fundamental difference is that the field strength tensor F is now
specified in relation to the vector gauge field potential G (e.g., gluon in QCD)
according to F =dG—iG”. For SU(N), both F and G are NxN matrices. In
this relationship, G* = [G”,GV ]dx ,dx, expresses the non-commuting nature of
the gauge fields and the non-linearity of Yang-Mills gauge theory. Therefore,
although ddG=0 as always because of the exterior geometry, the classical
(high-action) magnetic monopole density becomes the non-zero
Pzszd(dG—iGz)z—idGz. For SUNN), P is also an NxN matrix. In
integral form, using Gauss’/ Stokes’ law, this becomes:

[[[2=[[[aF =[[[alac -iG*)=-i[[[ac* =§ F = aG - if§ 6" =—iff G* .(1.1)

and from the last two terms above, we also derive the companion equation:

ﬁ dG=0. (1.2)
Of course, (1.2), albeit with the different field name, is just the relationship
ﬁ;dA = (0 which tells us that there are no magnetic monopoles in Abelian

gauge theory. But in light of (1.1), which provides us with a non-zero
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magnetic monopole I”P = —iﬁ G’ #0, what can we learn from (1.2), which

is the Yang-Mills analogue to the Abelian “no magnetic monopole”
relationship ﬁ;dA =07

If we perform a local transformation F—F =F—-dG on the field
strength F, which in expanded form is written as F*" — F*'= F* —9"G",
then we find from (1.1) as a direct and immediate result of the Abelian “no
magnetic monopole” relationship ﬁdG =0 in (1.2), that:

[[[P=fF—>§r =f(F-dac)=§r. (13)

This means that the flow of the field strength ﬁ F:—iﬁGz across a two

dimensional surface is invariant under the local gauge-like transformation
F* > F*'=F* —9"G*". We know in QED that invariance under the
similar transformation A* — A“'= A” +9“A means the gauge parameter A is
not a physical observable. We know in gravitational theory that invariance
under g* — g""'=g"" +3%“A” likewise means the gauge vector A’ is not a
physical observable. In this case, the invariance of ﬁ F under the

transformation F*" — F*'= F* —9"G* tells us the gauge field G* is not an
observable over the surface through which the field ﬁ F = —iﬁGz is flowing.

But G# are simply the gauge fields, which in QCD, are the gluon fields. So,
simply put: the Yang-Mills gauge fields G", including gluons in SU(3)c, are
not observables across any closed surface surrounding a magnetic monopole
density P. No matter what may transpire inside the volume represented by
j j j P, the gauge fields remain confined.

Taking this a step further, we see that the origins of this gauge field
confinement rest in the 140-year old mystery as to why there are no magnetic
monopoles in Abelian gauge theory. In differential forms, the statement of
this is ddG =0. In integral form, this becomes ﬁdG =0, equation (1.2). Yet

it is precisely this same “zero” which renders ﬁ F %ﬁ F'= ﬁ F invariant under

F* — F*'=F" —9”G*" in (1.3). So the physical observation that there are
no magnetic monopoles in Abelian gauge theory translates into a symmetry
condition in non-Abelian gauge theory that gauge boson flow is not an
observable over the surface of a magnetic charge. Again: In Abelian gauge
theory there are no magnetic monopoles. In non-Abelian theory, this absence
of Abelian magnetic monopoles translates into there being no flow of gauge
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bosons (e.g., gluons) across any closed surface surrounding a Yang-Mills
magnetic monopole. Consequently, the absence of gluon flux, hence color,
across _surfaces surrounding non-Abelian chromo-magnetic _monopoles is
fundamentally equivalent to the absence of magnetic monopoles in Abelian

gauge theory. And, because this is turn originates in dd =0, we see that this
confinement is mandated by the differential forms geometry, imposed by
spacetime itself. The very same “zero” which in Abelian gauge theory says
that there are no magnetic monopoles, in non-Abelian gauge theory says that
there is no observable flux of Yang-Mills gauge fields across a closed surface
surrounding a Yang-Mills magnetic monopole. We do not find a net flow of
gluons across a closed monopole surface in Yang-Mills gauge theory any
more than we find Abelian magnetic monopoles in electrodynamics, for
identical geometric reasons.

2. Yang-Mills Magnetic Monopoles Contain Fermion Wavefunctions

While gauge field confinement is a necessary prerequisite for Yang-
Mills magnetic monopoles to be considered baryon “candidates,” it is by no
means sufficient. At minimum, we must also show that these monopoles are
capable of naturally containing three fermions in suitable color eigenstates,
because we know that baryons contain three colored quarks. So, we now
show how the hypothesis that Yang-Mills magnetic monopoles are baryons is
fully consistent with SU(3)c QCD as it has been extensively studied and
confirmed, replete with three valence quarks and gluons and quark-anti-quark
pairs (mesons), and that QCD can in fact be viewed as the very consequence
of this thesis. This will be the central focus of sections 2 through 5.

For this purpose, we start with the classical “chromoelectric” and

“chromomagnetic” Maxwell field equations, using D* =9* —iG* :

J =9, F* =3 ,D“G" =3,D*G" —3,D"G* =(g"3,D° —3“D" )G, 2.1)
P =0°F" +0*F' +3"F* 2.2)
together with the Yang-Mills field strength tensor:

F*™ =9*G" -3"G* -il6*, 6" |=D*G" - D" G* = D*G". 2.3)

Above, group generators 7' are related by the group structure relation
[T ==i[r7,T"], and F* =T'F* and G* =T'G," are NxN matrices for any

given SU(N) (same for J” and P*"). (2.2) and (2.3) respectively are just
expanded restatements of the classical field relationships P=dF and
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F =dG—iG* which we used in (1.1). We do not in general show the
interaction charge strength g, but scale this into the gauge bosons gG* —G*.

As soon as one substitutes the non-Abelian (2.3) into Maxwell’s
equation (2.2), while the terms based on 0“G" —9"G* continue to zero out by
identity in the usual way (via dd =0 which as shown in section 1 confines the
gauge fields), one nonetheless arrives at a residual non-zero magnetic charge:
P =—il3°lc*.¢" |+ o*[c".¢°|+a"[6°.6*)) L(2.4)

=—ilpec.¢" |+, 96" [+ prcv .67 |+ 6" 0767 |+ pree. 6+ ]+ |67 .9 6+)

This is a longhand version of P =—idG’ =-2idG used in (1.1). The balance
of this paper will largely be devoted to studying this P monopole closely.
In sections 2 through 5 we will essentially study its symmetry properties and
show how these coincide with those of QCD. In section 6 through 9 we shall
study the circumstances under which it is topologically stable. In sections 10
through 12 we shall study a Gaussian ansatz for fermion wavefunctions which
gives this monopole a short interaction range and yields calculable mass and
binding energy predictions according with experimental observations.

To begin, we make use of the commutator relationship 3°G* = i{k®,G*]
to replace the various 9°G* in (2.4). Expanding, G*k°G" —G"k°G" appears
throughout, so these terms drop out. Re-consolidating yields:

P =(le*.¢" 1, |+ 6", 61k ]+ [l6°.6#] k7). 2.5)

Now, by way of brief preview, in the t’'Hooft model [1] which we shall
review in detail in section 9, the spin 1 gauge fields are specified as a function
of radial distance r using the ansaiz G, = 8mbbe(r). Solutions of Lagrangian

(9.2) infra are then used to find G(r) and lead to the t"Hooft monopole
solutions. Here, we will instead seek an inverse relation G,=1_J° for

Maxwell’s (2.1) to replace each G* above with a J# which can then be used
to introduce fermion field wavefunctions y via J# = %}/”y/ . The ansatz we
employ will then be based on the radial behavior of these spin ¥z fermion
fields. Using spin Y2 fermion fields rather than spin 1 gauge fields to
introduce an ansatz about the radial behavior of the G*, is the primary
difference between the monopoles to be developed here, and the t’Hooft
monopoles.

Proceeding using 0°G* = i[k",G“ ], inverse [, is specified in terms of a
U <> o symmetrized configuration space operator based on the
g"°d,D"* —d" D’ contained (2.1), with a hand-added Proca mass, by:
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Lo (= 8" ek, + k.G |- k7 + 4l .62 ) = 54 (2.6)
GV}] to

calculate 7_,. In doing so, we keep in mind that the G° is an NxN matrix for

We also use a o<>v symmetrized I, = Ag_, + Bk k, +%Ci[k

{o?

the Yang-Mills gauge group SU(N), so any time G appears in a denominator
we must actually form a Yang-Mills matrix inverse. So that expressions we
develop have a similar “look™ to familiar expressions from QED, we use a
“quoted denominator” notation 1/"M"=M" to designate a Yang-Mills matrix
inverse. Thus, G=' =1/"G°", etc. This inverse from (2.6) is calculated to be:
kok, +Lilk,.G, |
w2 o 17, "
m”- -k, —ik".G_ | , @7
"kk, —m> +ilk?,G,|"
and can only be formed if we simultaneously impose the covariant gauge
condition, in configuration space:

_gcw+

I =

oV

0.3, -19,,G, Jo*a” -1a%G")=0. 28)
Note that the often-employed i[k",Ga]= 9°G, =0 is not a gauge condition here;
this 1s replaced by (2.8).

Now, inverse (2.7) has many interesting properties which we shall not
take the time to explore here which would require an entire separate paper to
do them justice. Special cases of interest include ik,,G,]=9,G, -»0; m=0;

both 9,G, —0 and m =0; and on shell k%, —m’> =0 for m#0, or k%k, =0
for m=0. We will also note that when working towards a quantum path
integral formulation, i[k",Gg]:a"Gg in (2.7) 1s replaced by a gauge-invariant
perturbation —v = (a"GG +Gga")+ G°G, , contracted from a perturbation tensor
-V = (a”GV +Gva”)+ G“G". But our interest at the moment is in the low-
perturbation limit, which is specified by i[k,,G,]=9,G, — 0. Thus, using (2.7)
in the inverse relation G, =7, J°, we “turn off” all the perturbations by setting
ilk,,G,]=9,G,=0. When we do so, all the inverses (quoted denominators) in

(2.7) become ordinary denominators. We then reduce using the fact that in
momentum space, current conservation g u #(x)=0 becomes k,J “(k)=0 (see

[4] after 1.5(4)). We thus obtain:

G, =—2L> _j°. (2.9)
k%k,—m
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The above is just like the expressions we encounter for inverses with a Proca
mass in QED. It says, not unexpectedly, that in the low-perturbation limit,
when we set 9,G,—0 (and in a  deeper  analysis,
—v* =(0“G" + G"3* )+ G"G” —0) QCD looks like QED.

The point of developing this inverse, is to be able to use (2.9) in (2.5)
and then deploy fermion wavefunctions via J* =yy“y. Because (2.5)
contains six different appearances of G,, there are six independent
substitutions of (2.9) into (2.5), and what we must presume to be six
independent Proca masses m. To track this, we will use the first six letters of
the Greek alphabet «,f,7,9,,{ to carry out the internal index summations
and to label each of these six Proca masses. This substitution yields:
P — _H 8%, > gVﬁJﬁ }k”]

kky—m’ kg —m 4’

(a)

) g”"J, g%, 2}]{/1 ) (2.10)
)

2 9
| KTk, =m,) Kky=m |
_ g, g"J, } o
B 2 gv 20
| Kk, =,y KTk =g

Here, we see six massive vector boson propagators each coupled with
a current vector J,. We raise the indexes on all the currents and absorb the

g%. Weuse J*=T'J", i=1,23..N’~1 to explicitly introduce the SU(N)
generators. We factor out the resulting commutators [Ti,Tj ] And finally, we

employ J/* =y_/];7”y/ and the like to introduce fermion wavefunctions. With
this, and moving all currents into the same numerator, (2.10) becomes:

[{ | 1/7T,-7”W/7T,-7V1//j o

o 2 g 2
k%, —mg, "~ k kﬁ—m(ﬁ)

por - ]| { 1 vy t/n/fT,-7zt/f}kﬂ . 2.11)
k7k,—m.,~ kks—mg

1 yLy yyl v'y y
Kk, ’

2 c 2
—m, kTky—mg,
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The above monopole now contains fermion wavefunctions in three
additive terms. In the next three sections, we shall show how these are the
wavefunctions of the three colored quarks of QCD.

3. Yang-Mills Magnetic Monopoles Contain Three Fermions and
Fermion Propagators

Let us first take a «close look at the fermion term
WLy T,y v /(kﬂ ks _m(ﬂ)z) and the other two like-terms in (2.11). First, we
focus on y7,y“yyT,y"y , and refer (o sections 6.2 and 6.14 of [5]. If these two

spacetime indexes u, v, had been summed with one another in the form of
l/_/Ti}/”l//l/_/Tj y,.v - then this would represent Moeller scattering. But because

these are free spacetime indexes, the Feynman diagram associated with this
term will be that for Compton scattering. The two lowest-order diagrams for
this, as will be developed in the discussion to follow, are shown in Figure 1

below. Specifically, the left vertex contains the factor Tj}/" and the right
vertex contains 7.p*, with the free indexes 4, v shown at the end of the
respective boson lines. For the four-momentum of the wavefunctions, we
designate p? to represent the initial incoming momentum of the rightmost
and p’° to represent the final, outgoing momentum of the leftmost l/_/ Thus,
we rewrite this term as y(p")T,y*yyT, ¥ y(p) -

wip Yy g+ m) Ty wip)

Pps—m

wk® ;b’—( ;‘)')7-: }’# (#’ + m} [J Fwip) ok ‘s v kS ’u‘k’ﬂ

& 2
PEpy—m

Figure 1
Appearing in the center of the numerator is iy . For Compton
scattering, these two wavefunctions have no intervening vertex and so are
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represented by a single fermion line in the middle of the diagram. The four-
momentum is either p% =p° +k° for the left diagram of Figure 1, or
P°o=p°—k° for the right diagram, with k° and k'’ respectively
representing the four-momentum added to or subtracted from the fermion
wavefunctions at the T,y vertex. In terms of the Mandelstam variables,
p‘r(@pa(s) = s, while p‘rmpgm =, which explains the choice of s, ¢ labels.

For notational compactness, we shall often make use of p° while keeping in
mind that this may represent either of p% or p% as defined above.
Because these wavefunctions are directly back to back in the form of l//%

with no intervening vertex y*, the momenta of the two wavefunctions in yy
are equal p°(y)= p"(y_/)zp", s0 we may set yw =uu, where u and u are a

Dirac spinor and its adjoint. For U(1), l//l/_fzu; is a 4x4 Dirac matrix
because each spinor has four components. But for SU(N), it is important to

keep in mind that WY =uu isa (4x N)x(4x N) matrix.

Next, we sum uu over all spins states, X u . Often, this spin sum

spins u

is written as X . uu= p+m (see e.g., [5], section 5.5). But there is an

spins

implied covariant (real) normalization N >=E+m in this expression. So to
be fully explicit, this should really be written (see [5], problem solution 5.9):
- N?
U= +m), 3.1
Zspms E +m (p ) ( )
where p+m is also a (4xN)x(4xN) matrix for SU(N), and where we have

made use of p =y”p, using the s and t-channel p° as defined above, with
p’ =E. So we use the foregoing including (3.1) in (2.11) to obtain
VLYWL y _yhy'wdy'y  ylLy'Seudy'y  N° yLy“p+mly'y (30
kPky—mp) kPky—mp)’ kPky—mp)’ E+m  kky—m’
for top line term in (2.11), and similarly for the other two like-terms.
Now, let us take a moment to discuss propagators. In general, a

propagator (times -i) is specified by X_, /(p‘7 P, —mz), where p° and m are
the four-momentum and rest mass of the propagating particle. For fermions,
we specifically employ (3.1) including p° as defined above, so that:
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Z . 2 2 2 2

spins 2: N p+m 2: N p+m — N 1 — N (p_m)71(33)
p°p,—m’ E+mp°p,—m* E+m(p+mlp—m) E+mp-m E+m
For N’ =E+m, the propagator becomes the familiar (p—m) "' =1/(p—m).
Of course, having a (4x N )x(4x N) (or even a 4x4) matrix such as p—m ina
denominator is really not a proper mathematical expression, but merely a
convenient shorthand to designate a matrix inverse. Thus, as we have done
previously in section 2, we will use a quoted denominator 1/"p —m" to gently
remind us of this. With the earlier definitions of p?, (3.3) has two alternative
formulations corresponding to s and t channel diagrams in Figure 1:

Zgm _ N’ ptk+m __N 1 _ N (p+E—m)".34)
s—m> EB4+m(p+k)(p+k),-m*> E+m"p+k—-m" E+m

y 2 N 2 2

spins N 4 k+m N 1 N (p—k,—l’l’l)il.(?).S)

t—-m®> B+m (p=-kY(p-k),—m’ “E+m "p—k -m" " E+m
Now, let us closely contrast (3.2) with (3.4) and (3.5). The final term
in (3.2) contains at its center, the expression (p + m)/(kﬁ ky—m ﬁ)z). This

looks intriguingly like the fermion propagator in the second terms of (3.4) and

(3.5). However, m, P in (3.2) started out in (2.10) as a gauge boson mass in

the denominator of a gauge boson propagator g' /(kﬁkﬁ—m( ﬁ)z), with k”

being the associated four-momentum. By contrast, the numerator of (3.2),
with either p +m=p+k+m or p, +m=p—k +m contains a fermion mass

m and associated Dirac-daggered four-momentum p. That is, (3.2) looks to

have “apples” (bosons) in the denominator and “oranges” (fermions) in the
numerator. So the question arises: is there some way to mix “apples” and
“oranges” and actually treat (3.2) — and therefore the terms in (2.11) — as a
fermion propagator? And if so, what is required for us to be able to do so?
First, the generalized expression (3.3) does not discriminate fermions

from bosons. If the T in the left term of (3.3) operates on u;, then

spins

p°p,—m’ in the denominator produces a fermion propagator. If the X

spins
. . . . ol 2
operates on an expressiong, *¢g, with boson polarization vectors, p°p, —m

produces a boson propagator. That is, it is the ¥ in the numerator of a

spins
propagator such as (3.3) which sets the tone for whether the propagator is that
of a fermion or a boson. This suggests, because p+m is in the numerator of
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(3.2), and of (2.11) via yy = uu , that the denominators k’k, —m,,* in (2.11)

and (3.2) should be associated with fermions, not bosons.

Second, more fundamentally, it is instructive to consider spontaneous
symmetry breaking, because that entails a similar mixing of apples and
oranges. In weak SU(2)w, for example, we start with three massless gauge

bosons W' W W?* each with two degrees of freedom for a subtotal of six,
and a complex scalar doublet ¢ which contains four scalar degrees of

freedom, for a total of ten degrees of freedom. After spontaneous symmetry
breaking, three of the scalar degrees of freedom are “swallowed” by the three
gauge bosons via the Goldstone mechanism. The gauge bosons become
massive, each with three degrees of freedom for a total of nine, and the
remaining scalar degree of freedom goes to the Higgs field. We still end up
with ten degrees of freedom, but they are redistributed from the scalars
(“apples”) to the gauge bosons (“oranges”). In SU()WxU(1)Y electroweak
theory, we start with four massless gauge bosons rather than three, but the
photon remains massless. So twelve degrees of freedom before symmetry
breaking (eight from the four massless gauge bosons and four from the
complex scalar doublet) remain twelve degrees of freedom afterwards (three
massive vector bosons, one massless photon, and one Higgs field).

Equation (2.11), which is what we are working with at the moment,
started in (2.10) with a total of six Proca (presumed massive) boson
propagators, thus totaling 18 degrees of freedom. So if we want to mix apples
and oranges in (3.2) using a Goldstone-like mechanism that shifts degrees of
freedom from one particle type to another, we must be sure to end up with
eighteen degrees of freedom in total once we are all done.

Consequently, let us now introduce the hypothesis that each of

2 2

kﬁkﬁ —Mg k’k —m@2 and kgkg —m,” in the (2.11) denominators are to

be associated with the fermion masses and momenta in the £_._uu o p+m of

spins
their respective numerators in (3.2). We shall validate this “propagator
hypothesis” by showing that it leads to QCD. This means that (2.11) will now
contain three massive fermion propagators, and therefore three fermions,
which is highly desirable if we are attempting to demonstrate that the Yang-
Mills magnetic monopole is a baryon. And since a massive fermion contains
four degrees of freedom, (2.11) will now contain a total of twelve degrees of
freedom for the fermions. This leaves six of the 18 degrees of freedom for the
three remaining vector bosons propagators, and so means that these bosons
must drop down to two degrees of freedom apiece and thus become massless,
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i.e., that we must now set their Proca masses to zero, m My My =0.

(@
Now, the 18 degrees of freedom that initially belonged three apiece to six
massive vector bosons have been redistributed: 12 of these now belong to the
3 fermions, and only 6 belong to the 3 remaining bosons. That this hypothesis
leads to the requirement that the gauge bosons remain massless, is one of
several results we shall soon derive that are fully consistent with QCD and
indeed are required by QCD.

To implement this, using (3.2) in (2.11) and the s and t channel

diagrams in Figure 1, we promote k” = pf =p?+k”’ and
K> pﬁ o = pﬁ —k* to the momentum of the associated fermion lines in the
middle of both of Figures 1, and similarly for the other terms in (2.11). Thus,
at the T,y" vertex of the s-channel Figure 1, we are taking the original

incoming gauge boson momentum k? and adding it to the incoming fermion
momentum p? to arrive at p” +k”. And, at the T;y" vertex of the t-channel

Figure 1, we are taking the original incoming gauge boson momentum k”
associating it with the outgoing momentum by setting k” ——k"? and then
adding this to the incoming fermion momentum p” to obtain p” —k”. The
final fermion momentum, in either diagram, is then
PP =pP+k? —k’F = p? +4”. We then generally label all objects associated
with these three fermions with either f, ¢ or {, while setting Mgy My My =0

to balance the degrees of freedom, and we show the initial and final fermion
momenta. With all of this, (2.11) now becomes:

1 N(ﬂ)z y/(ﬂ)(p;,)ﬂ;/“(p(ﬂ) +m<ﬂ))7}7vy’<ﬂ)(pﬂ) ke
k%, E g +mg, P'HP,H _m<ﬂ)2

L N Yo7 0o +mn 7 Vo ()| | [3:0)
k'k, Bs +ms, P’ Ps—mys)’

+ 1 N({)z ‘//<;)(p})Ti7’”(ﬂ’<;) +m(§))Tj}/Vl//(§)(p§) P
kk, E g\ +my, pip —my)

P =17 +

The Higgs / Goldstone mechanism has long been known to enable massless
gauge bosons to become massive by swallowing degrees of freedom from
scalars. Here, fermions become massive by swallowing degrees of freedom
from massive bosons, which then revert to massless bosons. This turns out to
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be perfect for QCD, which is known to require massless gluons and which is
expected to have massive quarks.

Looking closely at (3.6), we now also see a path to choosing
normalizations N which simultaneously: 1) are covariant; 2) retain the original

mass dimensionality of +3 for uu ; and 3) greatly simplify (3.6). Specifically,
we now choose the covariant, mass dimension-preserving normalizations:
Ny’ = (E(ﬁ) g Jekyi Neyy' =(Eq +m(§))k"k7; Ny = (E@) g, ik, - (3.7)
Using these in (3.6), and re-labeling g —1;6 —2;{ —3, yields the further
simplified expression:

‘/_’(DTi 7Py, +mg, )Tj Y'va £°
P ﬁpﬁ - ma)z
por :_[Ti Tj] + v i7" (/"(2> T Mo, )TJ7V'/’(2> o (3.8)
9 2 9
P’ ps— e
n &@)Ti 7" (3 T M, )Tj7VV/(3) A
e 2 ’
PPy~ Mg

By virtue of (3.7) explicitly preserving the mass dimensionality, (3.8) retains a
mass dimension +3 which one expects for a source current density p*

corresponding with the second spacetime derivatives of a gauge potential G*
with mass dimension +1. We also removed the initial and final p and p’

which appeared in (3.6), which are now regarded to be implicit in (3.8). The
above should be contrasted with [6.103] and [6.104] in [5].

Now we return to the commutator [Ti ,Tj]. This operates to

antisymmetrically commute the vertices (Tl}/” )(T]}/V ), and so visibly restores

the antisymmetric character of the spacetime indexes, thus:

r Tj]ﬂ7” (p+m) 7y _yy lp+my’y _ylr* vl 3.9)
pﬁpﬁ_mZ pﬁpﬁ_mZ up_mu
where in the final term, we have defined the shorthand operator
=rrm_y (3.10)
p+m

This operator allows us to write consolidated expressions with " p—m"

fermion propagator denominators and clearly display the spacetime
symmetries, while at the same time providing a placeholder to restore the full



-415-

propagator. The “quasi-commutator” [;/”V i ] says that one inserts (3.10) into
the final term of (3.9) at the location designated by V, and then commutes »*

and y" with one another in antisymmetric combination about the p+m in the

numerator to arrive at the next to last term in (3.9).
Using the compact notation of (3.9) (which we shall momentarily re-
expand), we now write (3.8) as:

par __||[¥ . v v, e [ . v lve, || Ye [ v v, o || G.1D)
"Pay — Mgy "Poy M) "Piy My

This explicitly highlights the antisymmetric commutation [G“ ,GV] of free
indexes u, v with which everything started back in (2.5), and even further
back, in the underlying field density F* =9“G" —90"G* —i[G",GV] of (2.3)
which is the heart of non-commuting Yang-Mills field theory. This also
illustrates the “clean” compactness provided by quasi-commutator [7” e ]
All that now remains in (3.11) is the final commutator with momentum
terms such as k. Going back to the earlier-employed 9°G* =i[k",G”] which
tells us that commuting a spacetime field with £° is just a clever way to take
its derivatives, we can similarly write i0°M*" = [M ”V,k"] for a second rank
tensor field M*(x°). So, if we also use (3.11) to define a second rank Dirac

“quasi-covariant” —2ic*" = [7” vy ] , we may finally consolidate (3.11) to:

7o v I

l,/,/(l) ’/’a: L ’v/v’(2> Yo Y l{,/@) Vo | (3.12)
Py — Mg P2y — My Py — Mg,

This is our final expression for a Yang-Mills magnetic monopole P™ . We
shall now explore its symmetries and other properties in a variety of ways.

P =2/ 9°

" "

4. Yang-Mills Magnetic Monopoles Contain Spin 0, 1 and 2 Terms in
“Vector (V)” and ““Axial (A)” Variants, Consistent with Nuclear
Phenomenology

Before proceeding further with development, we pause in this section
to first evaluate the compact expression in (3.9) explicitly, so we can see what
is contained in each of the terms in the monopole (3.12). Separating the terms

with p = p, 7" and m yields:
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vl vl _wrtprm)yy _pawr r yv . myly* vy @.1)
"p—m" plp,—m? plp,—m? plpy—m?

The second separated term contains the ordinary second rank Dirac covariants
—2ic" = [;/” . 7”]. But the former term contains a third rank formation of
Dirac matrices ¥ ¢"', summed over the a index with p,. So, we expand
the numerator in this term to write:

PYTEYE YW = py P Y YW+ VY Y+ oY Yy puyt Yy (4.2)
Then, we evaluate each of the six independent components for
Ly =01,02,03,12,23,.31. The terms where either the ¢ or v index is equal to

the middle o index drop out because of the t,v antisymmetry. Applying the
Dirac relation 7’ =iy"y'y*’ in various combinations to the remaining terms,
then uvsing g, =7, in geodesic (flat spacetime tangential) coordinates to
lower indexes, the result can be covariantly-summarized via the Levi-Civita
tensor (in a basis where &;,,, :H ) as:

v ey =2ie" " p Yy 4.3)
Therefore, the explicit evaluation of (4.1), using the earlier-defined second
rank Dirac “quasi-covariant” —2ig*" = [7” v7v] and (3.10) for , and also the
ordinary covariant —2ig*" = [7” ,7V], is:

vorry _ iyl ylv iy lem)yly _ mvety e wp vy vy (4.4
"p-m' 2 tp-m' 2 pPpy-m’ pPpy-m’ pPpy—m’

This expression contains both a second rank antisymmetric tensor ywo*'y,

and a first rank axial vector l/_/}/ﬂ ¥’y . This is the first of many instances

where we shall discover that Yang-Mill magnetic monopoles inherently
contain certain chiral asymmetries that introduce axial objects which may
account for the chiral asymmetries and the many axial objects observed in
strong interaction hadron phenomenology. This sort of non-chiral result will
provide one very strong basis upon which to experimentally validate the thesis
that baryons are Yang-Mills magnetic monopoles.

Let us now go one step further, and use the Gordon decomposition
(see, e.g., [6] at 343-345) :

oy 1 ] ’ \% ’ Y
VIV =o- l//{(p +p) +E(p' - p),ic }/f (4.5)
m 2
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where g is the gyromagnetic g-factor, with an axial wavefunction
w — ¥’ =y, to further decompose (4.4) into:
_aﬂvV —
e L4
P PPy (4.6)
1 e”wp(p'+p)' — 1 g &”aplp — lor
L 0 (p 2p) W;l/,_z_g /)’/EP p)ip o™y
m P Py—m m P Ps—m
with g=p’—p as previously defined. This illustrates a) why (3.10) is

desirable for compactness and b) how when fully-expanded, this compact
notation reveals not only the second rank (spin 2) antisymmetric tensor

l/_/o"”yl and first rank (spin 1) axial vector yy? "y of (4.4), but also a second
rank (spin 2) axial tensor yic® y*y (in the form of an axial magnetic moment

term summed with g,) and a zero-rank (spin 0) pseudoscalar yy’y. Most

importantly, the magnetic monopole of (3.12) is built out of the term expanded
in (4.4) and (4.6), and so contains all of these spin 0, 1 and 2 “vector” and
“axial” objects.  This will be very important to understanding the
phenomenology of the observed strong interaction mesons, and in the next
section, we shall show how these terms are indicative of the types of “vector
(V)” and “axial (A)” mesons which mediate nuclear interactions.

5. Fermi-Dirac Exclusion Requires Using SU(3)¢c Quantum
Chromodynamics for Yang-Mills Magnetic Monopoles, Yielding the
Correct Baryon and Meson Color Wavefunctions

Returning to the main development, the Yang-Mills magnetic
monopole P™ (3.12), when contracted to the differential three-form used in
section 1, namely P = P*dx ,dx ,dx,, » is an NxN matrix for SU(N). We have

not yet chosen a particular Yang-Mills gauge group to associate with (3.12),
and in principle, are free to use P =T7'P*" with f"T, =—i[Tj T* ] generators
and structure constants for whatever gauge group we wish to explore. But,
(3.12) does contain exactly three fermion wavefunctions ¥, , ¥, and ¥ ;,

and their associated propagators, so one is certainly motivated to consider the
Yang-Mills gauge group SU(3). But is there anything that might require us to
apply SU(3) via purely deductive logic?

The answer is yes: The Fermi-Dirac Exclusion Principle (with which
Pauli’s name is also often associated) requires that no two fermions within a



418-

given system may simultaneously occupy the same quantum state. So if we

regard P in (3.12) as a “system” containing three fermion wavefunctions
and associated propagators, then we must utilize a gauge group that enables
each of these three fermions to be distinguishable from one another with
unique quantum numbers, similarly to how every electron within a given atom
must possess a unique set of quantum numbers #n, [, m, s generally associated
with energy, orbital angular momentum and spin. The natural gauge group to
achieve this exclusion, of course, is SU(3) (or SUB3)xU(1) as we shall
momentarily discuss).

In fact, this is where QCD usually starts: If we understand baryons as
containing three fermions which are quarks, and we know that Fermi-Dirac
exclusion mandates these three quarks not simultaneously occupy the same
quantum state, then we must introduce SU(3) or a variant thereof to enforce
exclusion. So we call the quarks Red, Green, Blue as a matter of convention,
set up an SU(3) Dirac Lagrangian for these quarks, impose gauge symmetry,
and arrive at SU(3)¢c QCD.

In the present development, we discover that Yang-Mills magnetic
monopoles naturally contain three fermions, we similarly require exclusion
and so introduce SU(3)c, and we thereby arrive at exactly the same SU(3)c
QCD theory, with no contradiction, simply from a different starting point.

Accordingly, we now take the formal step of imposing quantum
exclusion upon the three fermions in (3.12) by introducing the gauge group

SU(3)c with generators T° = A;i=1...8 normalized to tr(/l" )2 =1, and assigning

these three fermions to one of three exclusive color eigenstates R, G, B, with
associated quantum eigenvalues, as follows:

0
0

0
. . . . . (5.1
;'//(2>EV' zfﬁ;ﬂ :%>: Ve ;'//(:»EV' zfﬁ;ﬂ :7%>:
0 Vs
These fermions are now specified in precisely the same way as the three
colored quarks of QCD with SU(3)c. Similarly, referring back to sections 1

and 2, the eight associated gauge bosons now become G*=4G/. And

Ve
v =| 2 =438 =0)=] 0
0

because of (2.2), all of the non-linear gluon interactions of QCD will be
present here too. Further, earlier, between (3.3) and (3.6), we determined
these gauge bosons must be massless for the quarks to acquire their expected
non-zero mass. So these G* now have all the required characteristics to be the
eight bi-colored, massless gluons of QCD. The thesis that baryons are Yang-
Mills magnetic monopoles does not contradict QCD in any way! Moreover,
when combined with the Exclusion Principle, this thesis actually mandates
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QCD! But as shown in section 1, there is a bonus in this approach to QCD:
the confinement of gauge fields is built into the theory from the start, whereas
in many instances it is imposed by separate, ad-hoc mechanisms, see for
example, the MIT bag model in, e.g., [7] section 18. This emergence of QCD
also validates the “propagator hypothesis” which earlier yielded (3.6) from
(2.11). Now, let’s use (5.1) in the P*" of (3.12).

In the section 3, the spin sum (3.1) played a central role. From (5.1),
let us form the three spin sum operands:

V/RV7R 00 0 0 0 0 0 0
VaVwm=| 0 0 0F ¥o¥o =0 ¥We¥s 0f Vu¥=|0 0 0 (5.2)
0 00 0 0 0 00 w,u,

We see very explicitly that each of these is a 3x3 color matrix in which the
non-zero elements are 4x4 Dirac matrices yy (and the zeros are all 4x4
zeros). If we then start with (3.12) and backtrack through section 3 by
applying o*" =4 [}/ }/] (3.9); (3.7); (3.1) and yw =uu, and if we then

substitute (5.2) into the backtracked result, we may obtain (with £_. — ¥ for

spins

notational compactness):

Lo Wl EUe e 0 0
k%k, pRﬁpRﬁ —m,’ (53)
Poﬂ‘/ = 0 - a/l y/Gy Zy/(}y/(}ya y/G 0
Kk, Pa pca mg"
0 0 Loy Zv/my W
Kk, i’ Pag = my’

Then, forward tracking again through section 3, we reapply spin sums
and normalizations, and arrive back at:

aO' l’/‘/RO'ﬂVVl/fﬁ 0 0
Pr— My _
pvoa o ¥ W | (5.4)
" pG mG " _
0 0 aV l//BO'O-V/l l//B
" pB _ mB "

The difference between (5.4) and (3.12) is that when we explicitly use the
colored wavefunctions .y, ¥, rather than w ., v, and y,,, the

character of P?" as a 3x3 color matrix is made explicit. And, in a step that
will have great topological significance, extracting the trace, we write:
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MV oVH
TrPo—,uv - ao— l//RG l//R a,u l//G l// av l//BG l//B (55)
"Pr Mg P —mg" Py —my
The above is identical to (3.12), but for the fact that when we wish for the
colored wavefunctions to appear explicitly in lieu of ¥ ,,, ¥, and ¥; in an

analogous form, we are required to employ the trace equation.

Now, we have pointed out at the start of this section that developing
Yang-Mills magnetic monopoles and then applying exclusion yields the basic
required elements of QCD such as three colors of quark and eight bi-colored
massless gluons, plus the added bonus of a gauge field confinement naturally
built in from the start. But there is more: First, let us associate each color

wavefunction with the spacetime index in the related 9” operator in (5.5), i.e.,
6~R, u~G and v~ B. Keeping in mind that TrP?" is antisymmetric in all
spacetime indexes, we express this antisymmetry with wedge products as
OCAUAV~RAGAB . So the natural antisymmetry of the magnetic
monopole P*" leads straight to the required antisymmetric color singlet
wavefunction R[G,B|+G[B,R]+B[R,G] for a baryon (see [5] equation [2.70],
and compare the top line term a"[G”,G”]+8”[G”,G"]+a”[G",G”] of (2.4)).
That is, (5.5) has what is known to be the required antisymmetric color
wavefunction for a baryon! Indeed, one can argue that the antisymmetric

indexes in P™” should have been a tip-off that magnetic monopoles would
make good baryons.

Next, we showed in (1.3) that the invariance of ﬁF under a gauge-
like transformation F* — F*'= F* —9"G* means that no gauge bosons G*
(now gluons G*=AG”) are allowed to flow across a closed surface

surrounding a Yang-Mills magnetic monopole. So for SU(3)c, the gluons are
confined. So far, so good. But that only tells us what cannot flow. To find
out what can flow, we return to J‘J‘J‘p:ﬁpz_iﬁ(;z from (1.1). Because

P =P dxdx,dx,, let us multiply both sides of (5.5) by the anticommuting
volume element dx,dx,dx,, form matching trace equations, take the triple

integral, then apply Gauss’ / Stokes’ law to the right hand side and rename
spacetime indexes. What we get is:

[[[ee = §fTer = -iffTeG* = 2]]( N2l PP ik 7 },d (5.6)

"
— P — Mg P — Mg
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The Gaussian integration has removed the 9° operators from (5.5),
and what remains by inspection in (5.6) is the symmetric color singlet
wavefunction RR+GG + BB. This is precisely the symmetric color
combination required for a meson! But look at the context in which this
meson wavefunction is revealed: if the integrand in (5.6) is in fact
representative of mesons, then (5.6) taken together with section 1 makes a
very clear statement: Mesons, not gluons, are what net flow across any closed
surface surrounding a Yang-Mills magnetic monopole. But one can say the
exact same thing about what flows in and out of baryons! And, the observed
phenomenology of strong interactions makes very clear that baryons in fact
emit and absorb mesons, and not individual quarks or gluons (see [8]
especially 14.2 and [9] for a full exposition of experimentally-observed
mesons and their spin classifications as scalars, vectors, tensors, etc. and axial
variants). So this revelation of meson flow across the surface of a Yang-Mills
magnetic monopole further supports the thesis that baryons are Yang-Mills
magnetic monopoles, not only theoretically, but based on experimentally-
observed phenomenology. (5.6) says that Yang-Mills magnetic monopoles
interact by emitting and absorbing mediating mesons!

Importantly, however, the usual approaches to QCD do not provide a
compelling deductive rationale for why mesons and not gluons are allowed to
flow in and out of baryons, that is, they do not provide a natural deductive
explanation for confinement and meson-based interaction. Often, confinement
and meson flow are simply introduced through ad hoc mechanisms, again, see
[7] section 18. Starting with Yang-Mills magnetic monopoles, this is fully
explained on a deductive foundation, and so QCD is strengthened and
supplemented, again, without contradiction.

Now, let’s go a few steps step further: (5.6) tells us that mesons, with

RR+GG+BB color structure, flow in and out of Yang-Mills magnetic
monopoles. But what types of mesons? From (4.4) and (4.6) which expand
the terms in (5.6), we see that the mesons which flow are: second rank (spin 2)

antisymmetric  tensor  wo“'w  mesons, which are designated
phenomenologically as 2%; first rank (spin 1) axial vector l/_/}/ﬂ 7w mesons

designated as 17; second rank (spin 2) axial tensor y_/i o”’y’y mesons 27 and

most importantly, zero-rank (spin 0) pseudoscalar y»’y mesons designated 0,
which include the various @ and K mesons and remaining generational
mesons which dominate nuclear interactions and which Yukawa originally
predicated in 1935 to be carrier particles of the strong nuclear force. This is
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amply demonstrated to be experimentally true, see again, the extensive
evidence at [8], [9]. In fact, the only mesons we have not yet come across

when combining (4.4) and (4.6) with (5.6) are the spin O scalar y_/}fiy/ mesons

0" and the spin 1 vector y_/}/Vy/ mesons 1. But these two will also make an

appearance, as follows:
Designate axial wavefunctions via y° =iy’y'y*y’ as y, =7y, , where a

“vector” (V) wavefunction y, is defined as a wavefunction for which the
related current density J* =y, y*y, transforms as a Lorentz four-vector in

spacetime. Based on combining the relationship 3’ =iy’y'y*y’ with duality

based on the work of Reinich [10] later elaborated by Wheeler [11] which
uses the Levi-Civita formalism (see [12] at pages 87-89), it turns out that there
is a whole system of “chiral duality” that is an integral, albeit (apparently)
heretofore undeveloped feature of the Dirac algebra. For example, given a
duality relationship *A*" =L¢&"“ A, , one may write »°=iy")'y’y’ in the

>
alternative form ¢*” =i*c*'y°. Then, one may form y,c"y, =i*y,c"y, by
sandwiching between V wavefunctions.

Further, it is also well known because the second rank duality operator
##=_1 , that one can form continuous global rotations using ¢ = cos 8 +*sin &
(this is not to exclude local duality, which is also of interest). For example:
v, 0"y, —cosOy, 0"y, +isin HI/_IVO'”VI//A. (5.7)
v, 0"y, —isin Oy, oy, +cos Oy, y
Similar transformations may be developed for first / third and zeroth / fourth
rank duality, with the result that tensors mix with axial tensors, vectors with
axial vectors, and scalars with pseudoscalars. So in the end, we expect that
the Yang-Mills magnetic monopoles will allow all of the spin 0%, 1* and 2*
“vector” and “axial” mesons to pass through the closed surfaces (5.6). And
¥y’ =iy’y'y*y* can also be used to rewrite a spin s “vector” meson as a spin 4-s
“axial” meson and a spin s “axial” meson as a spin 4-s “vector” meson. So 3*
and 4* mesons will be permitted to flow as well. Further, there is nothing to

prevent composite mesons such as gggg. And, when ¥y’ =iy’y'y’y’ is applied

to (3.10) as part of a Gordon decomposition (really, recomposition) of a vector
current, it turns out that baryon and meson physics is endemically, organically
non-chiral, which is consistent with what is experimentally observed, all with
¥y =iy’y'y’y’ being the mainspring. Duality angle 8 comes to be associated
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with the strength of the running strong coupling «,, and this in turn bears

well-studied relationships, [13], [14] to experimental momentum transfer Q.
So, while we shall leave the development of this chiral duality to a
separate paper, we simply note for now that fully developing the chiral duality
of Dirac’s equation and applying this to (4.6) may be one way to
experimentally confirm the thesis that Baryons are Yang-Mills magnetic
monopoles: simply probe nucleons at varying energies, study the chiral / spin
s* characteristics of the meson debris that emerges from those probes, and
correlate those chiral properties to the probe energies that were applied.

6. Yang-Mills Magnetic Monopoles Require the Topologically-Stable
Gauge Group SU(3)cxU(1)

Now, let us examine the topological stability of the Yang Mills
magnetic monopole baryons, by looking at several further aspects of (5.4) and

(5.5). First, using the eight generators A of SU(3)c let us write the left hand
side of (5.5) as P* =2 P™ . The off diagonal entries in (5.4) are manifestly
zero, and as already discussed after (5.5), this leads to baryons and mesons
respectively having R[G, B]+G[B,R]+ B[R,G| and RR + GG + BB color singlet
wavefunctions, as required by QCD. This means that for the left and right
hand sides of (5.4) to match up while having these required wavefunction
color symmetries, all six of the P™ * which sum with off-diagonal generators

must be zero, i.e., p * —(. Therefore:

1,2,4,5,6,7

ouv
| 2—3/521’8 0 0
P =AP™ = 0 -5 B” +3R™ 0 - 6.1)
0 0 _2_\1/§P80'/lv —%PSO-/[V

(Again, tr( ")2 =1.) However, because the assumed gauge group is the simple
gauge group SU(3)c with all fraceless generators, the trace of (6.1) is also
zero, TrP™ =0 . This contradicts (5.5), which has a non-zero trace, and leads
us directly to an examination of topology.

In order for p*"=2p™" above to acquire a non-zero trace, we can no
longer use SU(3)c alone, but must cross SU(3)c with a U(1) gauge group for
which the generator has a non-zero trace. In particular, the U(1) generator
will need to be a 3x3 unit matrix 7, , times some constant number. We
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designate this U(1) generator as A", which we take for now to be a 3x3
remnant of the 7" generator of a simple gauge group SU(N >4). If we

normalize this to Tr(2°) =1, then 1" = +1,,,- This should be reminiscent of

electroweak theory in which a U(1)y generator is crossed with the three
SU(2)w isospin generators I’ to form SU(2)wxU(1)y with the (left-chiral)
quarks having the U(l)y 2x2 hypercharge matrix generator ¥ =11, ,, the
(left-chiral) leptons having the 2x2 hypercharge matrix generator ¥ =-11,,,
and a non-compact embedding of the electromagnetic group with charge
generator Q=Y /2+1° across SU(2)wxU(1)y.

Once we employ SU(3)cxU(1), rather than SU(3)c alone, we can now

ensure that TrP™’ =—=PA,”" on the left hand side of (5.5) will be non-

vanishing to match its non-vanishing right hand side, and that (5.6) will then
describe a non-zero flow across the closed monopole surface of objects with
the color symmetry RR+GG+ BB of a meson.  Specifically, with
SU@B)exU(1) and i=1...8 and 15, we write (5.4) as:

1 v 1 auv
‘ EPIS +2_J§2P8 0 0
P = AP = 0 ﬁplsouv _ﬁpswv +%P3ouv 0
0 0 SR ke n 2| (6.2)
o o
Pr— Mg _
o"°
=) 0 gr e Ve 0
Pc — Mg _
0 0 3 ¥s0 ™ Y,
“pp -,

The non-vanishing trace equation (5.5) then becomes:

TrP™ = iPISO'/tV _ _2[80- l//RO-ﬂVVl//R + o4 l//GO-VVO- Yo +9 l//BO-O-Wu Vs ] . (63)
J6 "pr—mp" "pe—mg" Py —my"
So the left and right hand sides are now both non-zero, but this is only
achieved using SU(3)cxU(1) rather than SU(3)c alone. We see that with (6.1)
alone, i.e., with a simple gauge group SU(3)c alone, the right hand term would
become zero. This U(1) factor, which prevents the right hand sides of (6.2)
and (6.3) from vanishing, is very important to providing topological stability.
In section 7, we will examine the possible physical meaning of the
quantum numbers associated with this new U(1) factor. But first, we point out
the very vital benefit flowing from (6.3): this U(1) factor, by making (6.3)
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non-zero, will allow us to ensure that these Yang-Mills magnetic monopole
baryons are topologically stable. This is vital, because even though Yang-
Mills magnetic monopoles with Fermi-Dirac exclusion lead us to all of the
symmetries of QCD and baryons, to wit: gauge field confinement, three
colored fermions, a R[G,B|+G|[B,R]+B[R,G| baryon wavefunction, mesons

with RR+GG + BB wavefunctions, and spin 0, 1 and 2 “vector” and “axial”
mesons but no gluons flowing across the baryon surface, we still cannot
identify the Yang-Mills magnetic monopole with the physical, observed
baryons, for example, proton and neutrons, until we have established that this
magnetic monopole is a topologically stable with finite spatial expanse and
finite total energy, and with the correct set of flavor quantum numbers (most
importantly, electric charge and baryon number) which characterize the
observed physical baryons. SU(3)cxU(1) does just that!

Specifically, as is pointed out by Cheng and Li [15] at 472-473:
“Topological considerations lead to the general result that stable monopole
solutions occur for any gauge theories in which a simple gauge group G is
broken down to a smaller group H = h x U(1) containing an explicit U(1)
factor.” Further, “the stable grand unified monopole . . . is expected to have
both the ‘ordinary’ and the colour magnetic charges.” So, while SU(3)¢ alone
is incapable of supporting a topologically stable colored magnetic monopole,
the group SU(3)cxU(1) — when understood to be the residual group following
symmetry breaking of a larger simple grand unified gauge group
G o SURB)C xU(1) — will support topologically stable configurations. Indeed,
in this context, the thesis of this paper is that the stable “colour magnetic
charges” referred to by Cheng and Li are baryons.

Weinberg makes a similar point in his definitive treatise [16] at 442:

“The Georgi-Glashow model” [which was the basis for
t’Hooft’s monopole model in [1] discussed at length in section

9 below] “was ruled out as a theory of weak and

electromagnetic interactions by the discovery of neutral

currents, but magnetic monopoles are expected to occur in

other theories, where a simply connected gauge group G is

spontaneously broken not to U(1), but to some subgroup

H’xU(1), where H’ is simply connected. . . . There are no

monopoles produced in the spontaneous breaking of the gauge

group SU(2)xU(1) of the standard electroweak theory, which is

not simply connected. . . . But we do find monopoles when the

simply connected gauge group G of theories of unified strong
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and electroweak interactions, such as SU(4)xSU(4) or SU(5) or

Spin(10, 1is spontaneously broken to the gauge group

SUB)xSU(2)xU(1) of the standard model. . . .”

Consequently, the thesis that Yang-Mills magnetic monopoles are
baryons, together with the exclusion principle as applied in (5.1), not only
leads us to SU@B3)c of QCD with no contradiction and delivers color
confinement and the flow of mesons across monopole surface. Via the non-
zero and non-trivial right hand side of (6.3), this thesis additionally forces us
to employ the non-simple gauge group SU(3)cxU(1) with a U(1) factor to
ensure that the monopoles are non-vanishing. Not only does this, in turn, lay
the foundation for a topologically stable monopole achieved by embedding
this group in some (presently unspecified) simple  group
G=SU(N 24)>SU@3). xU(1), but the right side of (6.3) will itself be the
expression from which we may calculate a finite baryon rest mass, as we shall
later see in section 11, based on a Gaussian ansatz borrowed from [3].

So, what we learn from (6.1) through (6.3) is the following: First, we
must start from a simple GUT gauge group SU(N >4) because all the
generators of this group are traceless and therefore the gauge theory based on
these groups will be renormalizable, as will be in hidden form, any smaller
group H c SU(N 24) theory which emerges from SU(N >4) following
symmetry breaking. It is through the traceless su (~v > 4) generators that we

ensure renormalizability. But the traceless matrices of SU (N > 4) will cause

the monopole trace terms of such a theory to be zero, TrP*" =0. Therefore,
such a theory with a simple gauge group will itself will have no stable
monopoles. The only way to simultaneously have renormalizability and have
stable monopoles, as the above excerpts from [15], [16] illustrate, is to start
with a simple G and break this down to a smaller group H = £ x U(1). And,
once we break symmetry and end up with SU(N >4) - SU@3).xU(1), we

simultaneously have two benefits: First, the SU(3).xU(1) theory will inherit
the renormalizability of SU(N >4) as a hidden symmetry. Second, the
monopoles of SU(3).xU(1) will become non-zero as in (6.3), and the U(1)

factor emerging from breaking symmetry will make the monopoles
topologically stable. So the tracelessness of (6.1) based on S(3)c, contrasted
with the non-zero-non-trivial trace of (6.2) and (6.3) based on SU(3).xU(1), is

a concrete illustration of the topological theorem that magnetic monopoles
only exist in a theory with H = i x U(1) that is broken from a larger G.
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This is what directly yields the monopole stability of the topological
theorems as discussed above, and as we shall see, this is what will provide us
with the ability to calculate finite monopole rest masses, for example, the
proton and neutron “current” rest masses, and to obtain the electron rest mass
from the up and down quark masses well within experimental errors and only
about 3% from the experimental means for quark masses, and to obtain
binding energies clearly in accord with measured nuclear phenomenology.

7. Protons and Neutrons Naturally Fit Fundamental SUQ3)cxU(1)g.L,
Representations of Yang-Mills Magnetic Monopoles

Now let us take a closer look at the groups
G =SU(N >4)>8SU@3) . xU(l) which we came upon in section 6 and which

will undergird the topological stability for the Yang-Mills magnetic monopole.
Volovok, in [17] Section 12.2.2, employs an SU(4) group in which the
normalized diag(,i15 ):2—5%(3,—1,—1,—1) is associated with the difference between

baryon number and lepton number, B-L. Specifically,
L—B= Z—ffdiag( 15 ): (1-1,—1-1) provides a very natural fundamental

> 3 3° 3

representation for fermion eigenstates of one lepton and three (colored)
quarks. The Volovok model then goes on to use preon eigenstates, but we
shall not do so here. Instead, we shall show how this same approach, with the
A° generator of SU(4) being proportional to B—L, may be used to directly
represent protons and electrons on the one hand, and neutrons and neutrinos
on the other, in relation to the Yang-Mills magnetic monopoles that we have
developed this far.

Following [17], and using the simple gauge group SU(4), let us

normalize via Tr(/‘fz)zé the two A° and A° generators, and define a third
embedded electric charge generator Q=B- L—% A8 = _% (JE A5 4 ,18) sitting

across these, as such:
-1 0

o O
[

0
0

o O

0 0 0 0 a0
0100 0 2 0 0o -+ o of/
— 15 _ 3 . 8 3 —_ 8 3
BoL=fi= 0 0%0’%1_007§ A e 20
0 00 4 00 0 -1 0 0 0 2

In the fundamental representation we may then specify associated
eigenvectors with the flavor quantum numbers:
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e 0 0 0 (72)
0 d 0 0

o[FlB=0=n0=)) | [I=|B=tii=0:0=4) | "i=|B=ti0=0:0=3) | | |=[B=t:L=0:0=1)

0 0 0 Uy

These quantum numbers are chiral symmetric, i.e., they are the same for both
left and right handed states. Moreover, these exactly fit the expected baryon,
lepton, and electric charge quantum numbers for the fermion quadruplet
e.d,.u..u,. In contrast to many approaches which attempt to place all three

colors of the same flavor of quark in the same multiplet, that is, u,,u,u, or
dg.d..dg, the assignments (7.1) and (7.2) put one (red) down quark together

with two (green and blue) up quarks in the fundamental representation. This
flavor assemblage is exactly what we find in a proton! Moreover, because the
election is the final member of this quadruplet, this representation yields a
quadruplet for which all the generators remain traceless, which as discussed
previously, yields a renormalizable gauge theory. Further, this
renormalizability will be preserved during symmetry breaking to separate the
electron from the three quarks comprising the proton. And the zero trace of
the Q generator in (7.1) is what makes the combination of a proton plus and
electron, which corresponds to a H' hydrogen atom, electrically neutral.
Because the color triplet in the SU(3) subgroup is a mix of flavor and
color d,u,u, and not a pure mono-flavored color triplet R,G,B ., specifically

because u and d also have a weak isospin relation between them, we shall refer
to (7.2) as the “proton representation” of the “isospin-modified color group”
C’, designated SU(3),.. With (7.1) and (7.2), we now associate the SU(3) -

subgroup which we have hitherto argued is a baryon, with perhaps the most
important baryon of all, namely, the proton. The unbroken SU(4) group
contains a proton and an electron. So we shall name this the SU(4)p “protium”
group because it contains the precise same constituents as H' hydrogen, which
is the most abundant chemical substance in the material universe. At the
presumably very high GUT energies where this group is unbroken, the quarks
may of course transform into electrons and vice versa. But because SU(4)p is
a simple gauge group with all traceless matrices, the magnetic monopoles of
this simple group itself will be topologically unstable, with TrP*” =0, recall
the discussion in section 6.

When symmetry breaking, we will wish to choose the Higgs sector
such that this group breaks down via SU4), — SU@3),~ xU(l),_, ., where the

U(1)p. factor now represents the baryon minus lepton number generator
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diag(B—L)z(—l 1,4 l) of (7.1). Then, referring to (6.2) and (6.3), and using

232323

the SU(3),- subgroup for the three quarks, we see that TrP™ =|B=1Q=1).

Specifically:  TrP™ now represents a topologically stable magnetic
monopole containing two up quarks and one down quark, with color
symmetry R[G,B]+G[B,R]+B[R,G], with its gauge fields confined, with

mesons RR+GG + BB allowed to pass through the surface to mediate its
interactions, with baryon number B=+1 and electric charge Q =+1, and it

most naturally pairs with the electron with L=1 and ¢ =-1 from which it
becomes broken at high energy when SU4), — SUQB),.xU1), ,. This is

thus perfectly situated to represent an actual physical proton. Because this
group is SU(3) . xU(1),_, , the non-zero trace of the U(1) “remnant” generator

diag(B) = (%%%) is what prevents the term on the right hand side of (6.3) from
being zeroed by the term on the left, and because of this U(1) factor, the
topological theorems tell us that this Yang-Mills magnetic monopole proton is
a stable field configuration, as it must be to represent the physical proton.
Finally, as we shall soon see by borrowing a Gaussian ansatz from [3],

TrP? =|B=1;,Q=1) is the term from which one can calculate explicitly that

this magnetic monopole baryon proton has a finite, calculable energy!
Neutrons are developed in a somewhat similar manner to protons.

Here, we note that %/18 in (7.1) has the required eigenvalues to represent the

electric charges of the three quarks in a neutron, plus a neutrino, and that the
B-L= —%/115 of (7.1) will also properly characterize the baryon and lepton

numbers of these fermions. So for neutrons and neutrinos, in contrast to (7.1),
we use:

~10 0 0 00 0 0
0 L0 0 02 0 0
_ 15 _ 3 _ s _ 3 7.
B-L=—[i"= 0 0Lo0 O=F4=4 o N 7
0 00 1 00 0 -1

and then may specify the associated eigenvectors with the indicated quantum

numbers:
v 0
0 —_
ofF
0 0

[(7.4)

0
0 =|B=1;L=0,0=—1)

|B:O;L:1;Q:O> u(; E|B:%;L:O;Q:%> J E|B:%;L:O;Q:—i3>

Q

0
0
0
d

<

B
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Here, the electric charge generators Q do not sit irregularly embedded across
A° and A as they do for the proton. Instead, the Q are directly, regularly
embedded into A alone. Here, the quadruplet V,u,.d..d, contains a
neutrino, together with one up quark and two down quarks. This specifies a
neutron and a neutrino, and so we shall refer to this as the SU(4)n “neutrium”
group. This too has a traceless (neutral sum) charge generator. Here, a
“neutron representation” of the “isospin-modified color group” C’ contains a
neutron triplet of quarks u,.d,dy, and we shall designate this as SU(3),..
When SU(4)y is broken down to SUQ3)nexU(1)g, the SU(3) magnetic
monopole containing three quarks now has TrP™ =|B=1;0=0) with

wavefunction type R[G, B]+G|B,R]+ B[R,G], and thus represents a neutron.

8. Protons and Neutrons and Electrons and Neutrinos Emerge from
Spontaneous Symmetry Breaking of a Simple SU(4)g.1, Group Down to
SURB)exU(1)s-L

Exactly how do we break these SU(4) symmetries? The Georgi-
Glashow SU(5) model [18] provides a good template, so let’s briefly review

that first. This model has 5x5-1=24 generators 7. One specifies a set of 24
real Higgs scalars ¢,;i =1...24 in the adjoint representation of SU(S), and

from those, the 5x5 vacuum matrix ®=T'¢.. Because the diagonal

generators A, A°, 2,4 can be combined to form any 5x5 traceless matrix
that one wishes, one uses these to form a hypercharge generator
diag(¥/2) = (~1,—1,-1,1 1) which is ¥/2=-d072 36715 B8 i

3° 3% 3°2°2
the Tr(T”z):% normalization. Then, using the regularly-embedded generator

diag(7*) = (0,0,0,4,—1), one also irregularly embeds the electric charge

220 2
Q=Y/2+1°, which leads to diag(Q)=Y/2+1°=(-1,~1-1,1,0). The right-
chiral quintuplet (dR,dG,dB,eC,—vC)R then matches up perfectly with these
Q.Y,I’ to form the fundamental SU(5) representation.
Symmetry breaking is specified using the Y generator such that
diag () = diag (T'¢, )= vy (- L.—1,—1,1,1), that is, D =v,, ¥ /2, where
Veur 1S @ vacuum expectation value at which the symmetry breaking takes

place. The rest follows: Given the irregular embedding
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y/2=-d07* st _sBps we must now set @, = VGUT,
Os = 5‘/_ 2 Veur and @ = _5B 2 Veur Wwith the remaining ¢ =0, to obtain
diag(q)):vGUT( 3 é’_%’%’%) Thus, ¢z4 +¢15 +¢8 :?V qur = C*vaur,
where C? =3 is the Clebsch-Gordon coefficient. If we then irregularly embed

the usual A',i =1...8 of SU(3)c into the 3x3 matrix in the upper left of SU(5)

to form A’‘, and assign the I',i =123 of weak SU(2)w to the regularly
embedded 2x2 matrix in the lower right, we find that the vacuum
®=v,, Y/2 commutes such that [CI),Z'i]:O, i=1...8, and [CI),Ii]:O,

i=12,3, ie., that the vacuum remains invariant under both SU(3)¢ and

SU2)w local gauge transformations e¥'% and e . Additionally, the Y

generator used to break the symmetry of course commutes with itself,
[®,Y]=v,,,[V.Y]/2=0, and so also leaves the vacuum invariant under e™°

U(1)y transformations.  This is how we arrive at SU(3)cxSUQ)wxU(1)y
following symmetry breaking, as it is these three subgroups which commute

with the vacuum @ =T'¢,. The further embedded Q=Y/2+1 then leaves

the ability to engage in a second stage of symmetry breaking, using an SU(2)
Higgs doublet in the fundamental representation of SU(2) at another vev
v~246 GeV which happens to be the Fermi vacuum. From this, one obtains
the electromagnetic interaction.

An important feature of all of this, of course, is that by virtue of the
topological theorems discussed earlier, the product group following SU(5) =
SUB)cxSU2)wxU(1)y symmetry breaking will contain stable magnetic
monopoles, by virtue of SU(5) being a simple gauge group. And, of course,
we are ensured that the broken theory will retain the renormalizability of the
unbroken theory.

With Georgi-Glashow SU(S) [18] as a backdrop, we are now ready to
break the symmetry of the protium and neutrium groups via
SU4), - SUQB),-xU1), , and SU@), ->SUQB),»xU1), ,. As reviewed
above, in Georgi and Glashow, symmetry is broken using hypercharge

generator diag(Y/2) = (—;,—%,—%,%,%) Here, we will instead use the

generator B—L of both (7.1) and (7.3), with diag(B-L)= ( 14,1 1) to

>3°3°3
break the symmetry of both the protium and neutrium groups. In the former
case, this will separate the electron from the proton, and in the latter, this will
separate the neutrino from the neutron. In SU(S), we broke symmetry by
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requiring (defining) that diag(®)= diag(Ti @, ) =Veour (—%,—%,—%,%,%) . Here,
in contrast, we require that:
diag(®) = diag(T'd )= veyy (~1,4,2,2) = vy diag(B— L) e, ® = ve, (B-L), (8.1)

Because B—L= —\/g/i15 is regularly embedded in both SU(4), and
SU (4), » the symmetry breaking is somewhat easier than in SU(5). We merely

set @5 = —\/vaUT and the remaining @ =0 to obtain diag(®)=v,,(~1,4.4,1).

32323

By inspection, ¢152 Z%VZGUT , yielding a Clebsch Gordon coefficient C* =£.
Because [CI),Zi]:O,i =1...8, the vacuum is invariant under the SUQ3)c
subgroup which for SU(4), contains the proton triplet d,u,u,, and which
for SU(4), contains the neutron triplet u,,d;.d,. Additionally, of course,
[®,B—L]=0 is self-commuting, which yields the U(l), , subgroup for both
the proton and neutron quark triplets.

For present purposes, where stable magnetic monopoles are of primary

interest, the fact that we now have developed non-simple gauge groups
SU@3).xU(1), , out of the simple gauge groups SU(4)p and SU(4)y for both
protons and neutrons which we denote in consolidated form as SU(4)pn, tells
us that these colored SU(3),. magnetic monopoles will be topologically stable
objects. Further, with L=0 for the fermions in the SU(3). representation,
U, , - UQ),. Topologically speaking, referring again to Weinberg’s [16]
at 442, the homotopy groups associated with this symmetry breaking are:
7, (SU @), 1 SU(3) o xU W), )= 7,(SU(3) - XU (1) )

= 7(SUBxm (U W),)=mUM,)=2
The final terms, 7,(SUQ3).)x7z,(UM),)=7,U1),)=Z, tell us that the
topologically-stable magnetic monopoles are formed out of the SU(3). triplet

of Fermions each with B=1/3 from U(l),, and so these stable SU(3).
monopoles have B=1. The baryons are now stable magnetic monopoles!
Returning to (6.2) and (6.3) where this topological discussion began,
following symmetry breaking the leptons separate from the quarks and P
is formed only from the unbroken SU(3)c subset of quarks, for which L=0.

Thus, after symmetry breaking, CP*" =—-BP.”" with ¢ =,£. So the trace

3

(8.2)

equation corresponding to (6.3) is then developed from the SU(3). subgroup,
using the U(1) generator diag(B)=(%,1,1) for which TrB=1. Taking the trace

3°3°3
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of each side of CP? =-BP,” thus yields CIrP™ =-P,*", which
combined with (6.3) then yields:
Y Y Yy WO Y Ol
CTeP™ = —p. " =—2C[a“ VO Vi ygu¥eO Vo o ¥s0 ij-(8-3)
Pr— g Pe — Mg Pg — g

Contrasting (6.3) with (8.3), we see that TrP™" =P, ™" in (63) is

replaced above by TrP* =-P,7 /C where the Clebsch-Gordon C =,/%,

that is, we see that the coefficient of B,* is different. In the (6.3) where the

U(1) group was tacked on to SU(3), this coefficient emerged from establishing

Y =+, normalized to Tr(,1152):%, hence TrA” =%. In (8.3), this coefficient

is now replaced simply by -1/C, which is a remnant from SU(4), , following

symmetry breaking.

It is the presence of this Clebsch-Gordon coefficient in (8.3) which
now incorporates the symmetry breaking which moved us from
SU4), > SUQB),~xU(1), , and SU@), — SUQB),~*xU(l), ,. Referring to

(8.2), P™ in (8.3) is now the topologically-stable magnetic monopole
7, (SU@3) C,)><7L'1 UM,)=mUW),)=2Z that we obtain following symmetry
breaking, and the very presence of this coefficient C, rather than a
normalization constant from the tacked-on U(1) of section 6, tells us that this
is a stable monopole that emerged following symmetry breaking from a larger
gauge group. In other words, if a monopole has a Clebsch-Gordon C next to
it as in (8.3), that signals that the monopole is topologically stable, because it
emerged following symmetry breaking from a larger group.

For the stable proton monopole of SU(3),. . the “red” quark will be

associated with the down quark, see (7.2), and the “green” and “blue” quarks
with the two up quarks, as a chosen convention. So we now write (8.3) as:

o ®y o V.o o ok
CTI'PDZWP :_Plsﬂﬂvp :_zc[aa l,/,/dRo- l//dR +aﬂ l//uGo- l//uG +av l//uBo- l//uf j . (84)

" " " "

P — Mg P Mg Py My
This expression, we associate directly with a physical proton and its duu
constituents. For the stable neutron monopole of SU(3),., see (7.4), we

similarly write:

CTIP™ = —p, ™ :-zc[a” V0" Ve 30V Vo v YO Vr j .(8.5)

"

1" 1"
Pur —Myg Pic —Myg P~ My

This is now regarded as a physical neutron, with udd constituents.
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9. Using a Gaussian Ansatz for Fermion Wavefunctions, the t’Hooft
Monopole Model Fully Specifies the Dynamical Properties of Yang-Mills
Magnetic Monopole Baryons

For the most part, the discussion thus far has attempted to show that
Yang-Mills magnetic monopoles have all of the necessary symmetry
characteristics to be regarded as baryons, and in sections 6 through 9, to show
they have the topological stability based on symmetry breaking, and the
correct baryon and electric charge quantum numbers, to further be regarded as
protons and neutrons. Now, we will want to explore how these objects behave
in spacetime, because to pass the test of being a proton or a neutron, these
magnetic monopoles will have to be different from the magnetic monopoles
with which we are familiar in two very important, and indeed, distinguishing
features: First, they will have to interact only at short range, because that is
what baryons do. They must not possess the inverse square field strength
which characterizes other known monopoles. Second, they will have to
possess masses on the order of 1 GeV. In contrast, the known magnetic
monopoles are extremely massive. In GUT theories their mass is set by the
scale of symmetry breaking, which can be 10'® GeV or more, and even in the
t"Hooft model, they are on the order of the 137xMm,, which is over 10 TeV.

So our monopoles here will have to obtain their masses in a very different
way, with a much smaller mass scale.

In order to explore the radial behavior of the Yang-Mills magnetic
monopole baryons, as well as their expected masses, it will now be helpful to
carefully contrast the monopole developed here, with that laid out in t'Hooft’s
original paper [1]. It will be helpful in this section for the reader to have
available the original (Hooft paper, which can be found at
www phys.uu.nl~thoolt/sibpub/magnetic_monopoles.pdl.  Where there are
differences in notation, these will be noted in the discussion below.

For each of SU(4), and SU(4), , we start with 15 Higgs scalar fields

¢;i=1...15. As in SU(5) reviewed above, we then form the 4x4 vacuum

matrix in the adjoint SU(4) representation (t’Hooft uses Q,):
O=T¢;a=1...15. 9.1

We have already used this expression in (8.1) to break symmetry via the
B—L generator of SU(4). We next specify a Lagrangian density in exactly

the same way as in the t’Hooft model [1], namely (t’Hooft uses GZV):
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e=—4FLF/" ~1D,9, D" ~4u’g, 9"~ Ao, ) . ©2)
This specifies physical dynamics identical to ' Hooft’s [2.1]. The gauge fields
are related to the Yang-Mills field strength tensor according to (2.3),
reproduced below with explicit internal symmetry indexes via G* =T'G*”,

F* =T'F* and f*T = —i[Tj,T"] (tHooft uses W,"):

F" =0"G,"-3"G " + [, G*"G. (9.3)

Finally, the gauge-covariant derivative of the Higgs vacuum field is:

D¢, =0,8,+f,G.o. 9.4)
The potential V(¢)=—1 ¢’ —%/1(@2)2 in (9.2) minimizes at:

v (9.)/9, =19, ~+ Alg.9" . = 0. ©9.5)
This allows us to define a symmetry-breaking vev energy v according to
(tHooft uses F* = (Qa>2 =1y?):

3
—2u° [ A=¢,9% =2Trd° =12, 9.6)
So up to this juncture, we fully follow the t’Hooft model [1], aside from the
fact that we employ the gauge groups SU(4), and SU(4), developed in
section 7, while t’Hooft uses the SO(3) model of Georgi and Glashow [19].
But from here, we shall diverge onto a different path.

In the t’Hooft model, the next step — which we shall not employ here —
is to hypothesize the form of an explicit radial solution to the foregoing, in

which both fields G; and ¢, in (9.2) are written as functions of the space
x,G(r) and

¢, =x_ @(r), see [2.8] in [1]. Boundary conditions are then imposed at r — oo,

: 2 _ a 3 a _
coordinates x, and r° =x,x", using the ansaiz G;=¢,

(9.2) is solved, and three main results are obtained: First, it is shown that there
is a radial magnetic field strength that falls off via an inverse square relation

1/r*,[221]in [1]. This is clearly indicative of a magnetic monopole, but this
would not be helpful for a baryon which interacts only at short range.
Second, the total flux over a closed surface is shown to satisfy the Schwinger

and in certain cases Dirac Quantization conditions eg =1 and eg =5 n, where
e and g are the electric and magnetic charges respectively, with the strength of
this inverse square law given by g/r>. This is now not only a monopole, but
a Schwinger / Dirac monopole.



-436-

Finally, keeping in mind that the canonical energy-momentum tensor
for a given field ¢ is given by:
0f
900,9)
and requiring L to be stationary under small variations in ¢(r) and G(r), o}
that 7" =—g*' 2, thus T® =-£ for g” =1, the total energy of the system
9.2) is p’=E= I”TOOde = —” fd’°x=-L. This expression E =—L

([2.10] in [1]) then gives the mass of the magnetic monopole, which is found
to be on the order of the large vev v obtained in (9.6), which mass scale would
not be suitable for a baryon.

Following t’Hooft, we shall also use the energy equation:
E=-L (9.8)
to obtain the monopole mass, but as we shall see, by using a different ansaiz
for Gy, we will not only be able to uncover a short range interaction, but will

TﬂV — aﬂ¢

—g"e, 9.7)

also be able to obtain a much smaller mass. For the moment, as regards the
monopole mass, it is worth noting that the vev mass scale for the t"Hooft
monopole enters through the parameterizations in [3.1] of [1]. Particularly, as
regards the pure Yang-Mills gauge field sector of the Lagrangian density,
Loee =—FF, F , given F=1y as noted earlier, the mass scale appears

gauge v ta
through the parameterizations w=W /F’¢ and x=eFr. The remaining
energy in the system based on £, =—1D, ¢ D"¢* -3 1°¢,0" —%ﬂ(@q)“)z, which
involves the Higgs vacuum ¢“, appears through the additional
parameterizations ¢=Q/F2% and f=Ale=M}/M;. The term with
D ¢, D"¢" mixes both parameterizations, and as we shall discuss in section 11,

also generates the vector boson masses.
While the energies based on vacuum terms with ¢ will be determined

by the (very large) symmetry breaking vev, the monopole energies developed
from the pure gauge field sector £, =—+F; F/ may in fact be decoupled

gauge
from the vev, and shown by different means to be on an MeV to GeV order of
magnitude. So, let us now examine what is different about the monopoles
being developed here in relation to the t’Hooft monopoles, and lay the
foundation for these monopoles to a) have short range and b) have MeV to
GeV-order energies.
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In the discussion to follow, we shall also introduce an ansatz about the
behavior of the gauge fields G* =7'G,” as a function of radial distance, but
shall do so in a different way. The first step of this ansatz is already to be
found in (2.10), where as discussed following (2.5), rather than go straight to a
condition such as UHooft’s G} =¢,,x,G(r), we instead employed (2.9) in

(2.5), wherein (2.9) is the inverse G,=1_J° of the classical Maxwell’s
charge equation J" =9 ,F* =9,D"G" of (2.1) taken with zero perturbation
9,G, —0. That is, at the point in development where t’Hooft uses
G =¢€,,x,G(r), we instead use G; =1_,J°" based on Maxwell’s J" =9 F*,

for zero perturbation, and then use J* =y_/];7”l// in (2.11) to introduce fermion

wavefunctions. When we then follow this to the end of the trail in sections 2
through 5 including applying Fermi-Dirac exclusion at the start of section 5,
we end up with a magnetic monopole (5.5) which contains three colored quark
wavefunctions and has all of the color symmetries expected in QCD, plus
confined gauge fields, plus mediation of interactions by mesons. One may
therefore think of (5.5) as being what emerges when one combines both of
Maxwell’s classical electric and magnetic charge equations (2.1), (2.2) in a
non-commuting (Yang-Mills) gauge theory (2.3) and then applies Fermi-Dirac
exclusion to Dirac wavefunctions that may be introduced via the currents
I'=yyy.

Now, in place of the ansatz G:=¢,,x,G(r) used by t’Hooft, and given

that (5.5) which later became (8.3) contains terms of the form a"(?/Co"“l//C)

which contain Dirac wavefunctions (C =R,G,B for shorthand), we shall

instead borrow from equation [14] of Ohanian’s [3], and will employ
Gaussian wavefunctions with radial behavior specified by a Gaussian ansatz:

w(r)= u(p)# IE ex{—l@j : (9.9)
2 R

where A (presently unspecified) has dimensions of length, r, :(xo,yo,zo)

designates the space coordinate of the center peak of the Gaussian, r is a radial

coordinate distance from 7,, and u(p) is a four-component Dirac spinor.

(Because y represents a fermion, it makes sense to consider what occurs

when A =h/mc is the reduced Compton wavelength of the associated fermion,
which will be further explored in section 11.) That is, t'Hooft’s ansatz
introduces radial behaviors through the spin 1 vector gauge fields via
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Gilr)=¢,,xG(r). The ansatz (9.9), in contrast, introduces radial behaviors

through the spin Y2 fermion fields in (8.3) via (9.9), and in particular,
hypothesizes that these fermion fields behave radially in spacetime as
Gaussians. One may, if one wishes, employ some other ansatz than that of
(9.9) if desired, but (9.9) seems to be a very natural course to explore, and
provides a way to do definitive exploratory calculations of energies and
interactions based on the monopole (8.3), particularly because of its easy
integrability and other good behaviors discussed below.

The key distinguishing point of the present approach in relation to the
t"Hooft monopole is this: ’Hooft introduces radial behaviors at the gauge
field level. Here, we introduce radial behaviors at the fermion field level.
Any sensible fermion field ansatz may be used with the present model, and
indeed, it will be up to experimental observation to validate the correct ansatz.
But, the ansatz in the present model must be introduced via the fermions, not
via the gauge bosons. This is the central difference between this approach
and the t’Hooft model.

Based on our ansatz choice (9.9), we easily show via u' =uy’ and

w' =y’ that:

1 (r ) )2 1 1 (r- ro) 0
=——exXp ———— M'u=———ex uy u = J (9.10)
viy=— p[ . el R W u=yyy =
is a probability density which Lorentz transforms as the time component of a
current four-vector. The Gaussian itself will thus experience Lorentz

contractions o 1/4/1-v*/c*> at relativistic energies. By inspection, at the
boundary, y(r —e)=0 and y'y(r —>e)=0. When integrated over the

entirety of a three-dimensional space at a given time, from - to +oo over d’x,
this Gaussian of course integrates to unity:

1 (r—r0)2 3
IIIﬁ3xgexp[— = ]dl ©-11)

2

Consequently, cornbining (9.10) and (9.11):
”Iy/ wd x=u uj” [ riro)}d%c wu=up’u. (9.12)

A primary reason to choose (9.9), is that this ansatz guarantees finite,
well-behaved results both at r — o, and when integrating out to infinity.
That is, (9.9) inherently comes packaged with precisely the types of boundary
conditions and finite integrability that will result in finite, stable, well-behaved
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solutions. It should also be noted based on the mathematics of Gaussians that
the variance (square standard deviation) ¢® =1%*. With the ansarz (9.9), we
will need to re-normalize u so that it is dimensionless, because the +3 mass

dimension of ¥y on the left hand side of (9.10) is balanced on the right-

¥

hand side by 1/ i, leaving u#'u dimensionless. Earlier, in (3.7), we

normalized such that u'u carried the +3 mass dimension, so we will soon
need to change this. But the context for doing so will be our examination of
the magnetic monopole baryon masses in Sections 11 and 12, and the
normalization will be driven by empirical data.

10. Yang-Mills Magnetic Monopoles with a Gaussian Ansatz Interact
only at Very Short Range as is Required for Nuclear Interactions

There are many beneficial consequences to using (9.9) in place of
G, = gmbbe(r) to specify how the monopoles behave as a function of radial

distance. First, of course, Gaussians are well-behaved, finite, stable functions
when integrated over an infinite spatial volume as in (9.12). Second, and
related to this, the boundary conditions at r — oo are implicitly imposed:
because (9.9) is a Gaussian, we know that y/(r - oo)= 0. This means that the
field strength tensor F*" based on these Gaussian will also be well behaved.
To see this explicitly, we first extract the integrand from (5.6) (ignoring for
the moment the terms 9“G" —3"G* from (2.3) which can also be included
when we extract the integrand because dd=0, but d#0, see (11.1) infra where
we shall include these terms):

Ty Y Ty
Tep# = Yo% Ve Vo Vo Vi@ Wl (10.1)
Pr— 1y P —Mg; P — 1y

Then, we make use of (9.9) or (9.10) in (10.1) to write:

eXp[_ (r ~or )2} 1 ;Raﬂvv Up

KRZ ﬂ%KRS "y
—+ ) PR S ¥

TrF“V(r)z—Z +eXP[— (r rozG) } ;1 3 .L.tGU MG.. ’ (10.2)
K(; 7Z'2KG P — Mg

+ exp[_ (r —hs )2 } 1 ;Baﬂvv Up

2 ES 3n "
B 7Z'2KB P — My
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where 7,,,7,;.%, designate the space coordinates of the central Gaussian
peaks for each of the R, G, B quarks. Clearly, at the boundary,
TrF* (r —o0)=0. Similarly, using (9.10), the radial derivative of ¥y is:

d( + N - (r=n) | 10.3
= ly'y)=-2 e exp(— e (10.3)

and this also approaches zero at r —oo. Because a typical term in the
magnetic monopole density (5.5) or (8.3) is of the form 3%y .c*"y,. with

colors C =R,G.B, (10.3) implies that that in space coordinates x' =(r,6,¢),
the radial component:

! l/lco-ﬂvvl//c :il/lcdﬂvvl/lc :_27”—7”0 exp| — (r_r0)2 uco-ﬂvvuc . (104)
pC _vav ar vvpC _vav ”%KS KZ

The underlying mathematical function rexp(— r’/ Kz) becomes zero at r —> oo,

"

thus, via (5.5) or (8.3), so too will the monopole density TrP*" (r — ) =0.

This type of good boundary behavior and finite integrability are good
characteristics to have for stability. But just as compelling is that the inherent
concentration of the Gaussian wavefunctions about central peaks at
ry = (xo, yo,zo), together with a rapid decline in intensity just a few standard

deviations way from the center, result in the type of short range — not inverse
square — interaction that definitely needs to occur if we are going to be able to
associate these Yang-Mills magnetic monopoles with physical baryons like
the proton and the neutron. Indeed, even if one were to use a different ansatz
than (9.9), so long as one selects well-behaved fermion wavefunctions which
are concentrated near a central peak and taper to zero at infinity, one will also
have well-behaved magnetic monopoles which interact only over short range
and not via inverse square. Let us now examine this more closely.

First, we write the surface integral of (10.2) as in (5.6), over a given
surface at r = R, as:

eXp[_ (r —Hor )2 ] 1 ;Raﬂvv Upg

2 3 3n "
KR EZKR Pr — My

_ 2 - MV
TrF :—Zﬁ +exp[— (r rOG) ] 31 UGO~ Ug dx ,dx, - (10.5)
r=R r=R ﬂ.i —
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Now, we need to be careful, because due to the Gaussian, this is not an inverse
square field strength. For an inverse square field, it does not matter whether
the charges are centered within the surface, situated near the edge of the
surface, or arbitrarily distributed in between. Nor does the shape of the
surface matter. The total flux across the surface will be the same no matter

what, precisely because the surface area A=42R> runs reciprocally to the

inverse square relationship g/R”, so that the magnetic field flux i =g is

constant, independent of R no matter what the configuration or location of the
surface about the charges. So, in evaluating (10.5), which does not use an
inverse square relation, let us simplify calculation by stipulating that the
surface is a spherical surface of radius R which is also situated such that the
three ry’s are at the center of the sphere. Further, because (10.5) contains
three quarks, each of which will have Gaussians centered at very close albeit
different coordinates 7.7 ;,7,; . we stipulate that R is sufficiently large so
that any physical separation between respective quarks may be neglected and
we may regard each of these quarks to be centered at the same central
coordinate location 7,. Further, let us choose our coordinates such that 7, =0

All of these are simplifying stipulations, and if one wanted to do so, one
could discard them and simply make careful use of unit vectors r=r/r to
further develop (10.5) as a three-body system, but that is not necessary for the
preliminary calculations we shall do here.

With r, =0, in polar coordinates x* = (t,r.0,¢), and using the surface

integral 47R> = ﬁ . r>sin> @d@d¢, for each term from (10.5) we write:

1 uco™ 8R? R* Yuco™u 10.6
) 20 Pe g4 d _ Uco " Ue  (10.6)
ﬁ {exp[ j SSErpy— J x, Adx, \/;KCB exp( KCZJ",{DC—mC”

Based on these stlpulatlons and (10.6), and adding the further simplifying
stipulations that A=Z, =R, =K,, m=my, =m, =m, and p=p, = p; = Py
this means that (10.5), using (3.10) and —2ic"" = [7”V7V] evaluates to:
24R* R*\ uc™ u . 12R? uy[z(p+m)73]
TrF = =— WAPTRE H 0 (10.7)
¢ =ffrr=- 2 xp( j e exp( KJ fe=or
That is, g~ is the total flux of magnetic monopole charge that will be observed

to flow across the closed surface at r=R, and it is indeed dependent on the
radius R of the closed surface. Figure 2 below, illustrates this total flux in

(10.7) for x=1, hence ¢’ = <, as a function of the spherical surface radius R.
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Figure 2

This is a magnetic-type flux because it is specified by g'(R)= ﬁ TrF .
But it obviously is of a very different character than the usual g =ﬁ F fora

monopole with an inverse square law, such as the t’'Hooft monopole. For this
more familiar monopole, g is a constant, independent of R, and would be
represented by a constant, horizontal line at the height g if drawn on Figure 2.

But for the monopole of Figure 2, the total magnetic flux g’(R)zﬁTrF is

clearly dependent on R, as it must be if this monopole is to represent a baryon,
such as a proton or neutron, which interacts only at very short range.
In Figure 2, coefficient A merely determines the amplitude (height) of

the curve (and note that »* has imaginary elements to cancel the i in A). With
a standard deviation o= the flux in Figure 2 peaks at R=1= V20 and
falls off rapidly thereafter. In general, because o = ﬁ?& (see after (9.12)), we

see that by about 40 =34 from the center, the total magnetic flux is virtually
non-existent! So: (10.7), which is drawn in Figure 2, demonstrates clearly that
while the magnetic monopole we have been developing here is indeed a
magnetic monopole because its flux over closed surfaces is specified by

g'(R)zﬁTrF, this monopole does not produce an inverse-square field

because the total flux depends upon R. Rather, it produces a field that falls off
very sharply just a few standard deviations from its center. Such short range
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fields are hallmarks of nuclear interactions, and further qualify Yang-Mills
magnetic monopoles for serious consideration as baryons.

So, to summarize: we have applied an ansatz to the fermions rather
than to the gauge bosons to specify the radial behavior of these Yang-Mills
magnetic monopoles. Using a Gaussian for the ansatz (for which one may
wish to substitute some other ansatz so long as it is applied to the fermions
and not the gauge bosons), we have demonstrated (using some simplifying
stipulations which can be lifted by more carefully using unit vectors 7 =r/r
to specify the fields of this three-body system) that these Yang-Mills magnetic
monopoles do interact only at very short range, as do real, physical baryons
such as protons and neutrons. In the next section, we shall show that this short
range is on the order of 2 Fermi, as it is expected to be from empirical data.

But, as discussed at the start of Section 9, it is also necessary for the
masses and energies associated with these monopoles to be in the MeV and
GeV range, because that too is observed in the physical world. The energy
physics of these monopoles will now be the focus of Sections 11 and 12,
which will validate using well-established empirical data, that these Yang-
Mills magnetic monopoles truly are baryons.

11. The Electron Mass is Predicted from Up and Down Quark Masses to
about 3% from the Experimental Mean

We begin our examination of the energies associated with the magnetic

monopoles with (8.3), which we rewrite using o*” :Lz'[;/”v;/v]. We then take

the Gaussian surface integral ﬁTrF =I”TrP as in (5.6) and extract the

integrand.  Finally, referring back to (2.3), we reintroduce the terms
20“G" —a3"G* which are removed from the monopole via dd=0, but do not zero
out for the field strength F=dA, and which we left out of (10.1). Thus:

1w —angr —argr - Vel e walrt e wlrrles)

Pr — Mg P —mg Py — iy

This is another way of expressing (10.1) in light of (2.3), and may be thought
of as a way of rewriting the fundamental Yang-Mills field relation
F* =9"G"-9"G" —i[G" ,GV] in (2.3) to capture much of our development so
far. (Note: The above is quadratic in G* and so can be used to do exact

calculations with the Gaussians employed in path integrals, see, e.g.,
Appendix A of [4].)
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Now, back in (2.7), we derived the inverse for the classical Maxwell
field equation J"=90,F*" of (2.1). But just prior to (2.9), we made the
simplifying choice to develop the magnetic monopole in the low-perturbation
limit by setting d,G, — 0, which we noted was more generally equivalent with
setting a gauge invariant perturbation vector —vV*" = (a”GV +Gva”)+ G"G" —0.
Thus, all of our results thus far display the behavior of Yang-Mills magnetic

monopoles for low, indeed, zero perturbation. We continue to examine zero
perturbation, so consistently with the development thus far, we set 9,G, — 0

in (11.1) as well. Thus, we now reduce (11.1) via 9,G, — 0, back to:

o ooV o T o ooV
TeF* =—i V/f [7 vy ]l'/'/R + V/'(';[7 vy ]‘{'/G + V/B[}/ vy ]l{'/B . (112)

Pr — Mg P — Mg Py — My

This is (10.1) with o** =< [p*,7"]. Next, as in (8.4) and (8.5), we write this as
two distinct expressions, one for the proton, and one for the neutron:

- gV - vV - gV
— z_i[v/d ol wlrrle, vy ]m}

pd_md pu_mu pu_mu , (113)

:_{v_/d[ﬁf"vf]wd +2%[7"VVV]WMJ

Py my" p.—m,’
— z_{v_/: e vl vl j
P, —m, Pa—my Pa—my

(11.4)

z_i[v/u v, L valrrlv., j
pm,” P —my”

In the foregoing, we have suppressed the color designations as they will not be
needed for the calculations following. In combining the two like terms for the
up quark in (11.3) and the down quark in (11.4), and because we will shortly
be integrating these over d’x from -0 o +o0 as part of the energy tensor, we
make the simplifying stipulation that any physical separation between
respective quarks may be neglected, as we did following (10.5).

Now, let us return to the t’Hooft monopole Lagrangian density (9.2).
As noted following (9.8), the portion §, =—1D,¢,D"¢" -1 1°¢,¢" —1 ﬂ(¢a¢)“ )2 of

this density which involves the Higgs vacuum ¢“ will be determined by the
GUT symmetry breaking scale at which the quarks are separated from the
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leptons via the symmetry breaking of (8.1). For example, using (9.4) in the
“kinetic energy” term D¢, D¢ of (9.2) yields:

Skinetic = _%Dﬂ¢aDﬂ¢a = _% (aﬂ¢aaﬂ¢a +2fabcaﬂ¢aGZ¢c + fabcfadeGZG;ll¢c¢e)' (115)
When we then apply ¢, = —\/vaUT and the remaining ¢ =0 to break the
symmetry as was done following (8.1), the final term becomes a sum of
Lagrangian vector boson mass terms:

£boson mass _%VGUng2 (% fableadSG,lblG;u )_) _%ZM zGﬂGﬂ ’ (116)
where we have rescaled Gfl - ngl to restore the interaction charge strength
heretofore absorbed into the bosons following (2.3). So the masses of the
vector bosons clearly flow from this term, and the boson mass scale will be set
by the extraordinarily high v, energy at which quark and leptons decay into
one another.

But as we shall now see, the pure gauge field sector ¢ =-1F¢ F*

gauge o oa

of (9.2) does not necessarily have to have its mass scale determined by v, .
As pointed out following (9.8), tHooft uses the parameterizations
w=W /F’ and x=¢eFr to set the scale for the magnetic monopole mass to
be the same as the symmetry breaking energy scale v, . But this is only
because the t’Hooft model does not introduce any other mass scale which
would not be arbitrary, and this in turn, is because the t’Hooft ansatz
G, =¢£,,x,G(r) introduces radial behaviors into F/" via the gauge fields G, .
Consequently, the masses of the monopoles become tied to the masses of the
massive gauge bosons that emerge following symmetry breaking, and these

are in turn tied to the GUT scale, as shown in (11.6) above.
Here, in important contrast, the Gaussian ansatz (9.9) introduces radial

behaviors into F*" via the fermion wavefunctions . Consequently, the

Hab

monopole mass scales which emerge out of ¢,  ~=-1F; F* via (9.7) and

gauge wt'a
(9.8) will be tied to the masses of the fermions, rather than to the gauge boson
masses which in turn are tied to the GUT energy. Of course, the fermions
have now been developed into up and down quarks, and the magnetic
monopoles have been developed into protons and neutrons. So with this
ansatz (9.9), the masses of the proton and neutron should be related in a
precise way to the masses of the up and down quarks, and not to the GUT
scale. We shall now show exactly how this is so.
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We first return to (9.7), which specifies the canonical energy
momentum tensor. The total energy of the dynamical system specified by £
is given by E=p° =”IT°°d3x as noted earlier. If Yang-Mills magnetic

monopoles truly are baryons, then because we have turned off perturbations
by setting d,G, — 0 throughout, E in this integral should give the “bare”

proton and neutron masses absent perturbations. Following t’Hooft, we
require L = I”£d3x to be stationary under small variations in the fields,

which allows us to obtain the total energy from (9.8), namely, E = —-L. Now
the question becomes, which terms from L do we use?

The Lagrangian density (9.2), of course, contains multiple terms. We
shall explore here, the energies specifically arising from the pure gauge field
term £, . =-1F; F/", thatis:

E= —Lgau:ge—msgauged% =L[[[FaFrad’x=1Tx|[[F, Fd’x. (11.7)

In exploring the pure gauge terms separately from those terms which contain
the vacuum &, we are simultaneously doing two things: First, via d,G, — 0,

we are turning off all perturbations. Second, by developing the energy only
outof ¢ =-1F;F/, we are turning off the vacuum. So the energies we

gauge
obtain will be the barest energies resulting from the intrinsic structure of these
monopoles with all perturbations and all vacuum effects turned off.

Next we substitute (11.3) and (11.4) into the above to write, for
protons and neutrons respectively:
E, :_lzJ'J'J'Ey_/ﬁ [7ﬂv7/v]y/d +2y_/u [V“VVV]% JXEWEI [7ﬂv7v]l//d +21//u [%xvyv]l//u Jd3x , (1 1 8)

B B B B B B B
Py My p.—m, Pa— My pP.—m,

=_l2J'J'J'£;d [7%7*]% l/_/d ;zﬂ/v]l//d +4y_/M[7“v7V]y/M l/_/d[7ﬂv7v]y/d +4%[7“V7V]ylu ;u ﬂvyv]l//u }Px

W W W W W W W W W W W W
P~y Py—My p.—m, Py —My p,—m, p,—m,

E, :_%J-J-J-EEM [7%7/]% +2y_/ﬁ, [7%7/]% JE% [7/;1\/7/1/]1//“ +2% [7ﬂv7v]l//d }Px (11.9)

B B B B B B B
p.—m, Py My p.—m, Ps—My

. Iﬂ@ T VAT e T 2 P P T i d A Mv]@({th

po—m"  p.—m, po—m" p—m, pommg P —m,
The above are a bit busy, but if we schematically refer to the terms with up
quarks as “u terms” and the terms with down quarks as “d terms,” the
important pattern to glean from (11.8) and (11.9) is that:
E,(duu) o< (d +2u)’ = d* + 4ud + 4u*, (11.10)

E (udd) o< (u+2d) =u® +4ud +4d”. (11.11)



-447-

This also means that the difference between the neutron and proton energies is
schematically given by the relationship:
AE=E, —E, «3(d”-u?). (11.12)
According to PDG’s latest survey [20], the unbound neutron mass is
939.565379 MeV, the unbound proton mass is 938.272046 MeV, and so their
difference AE is 1.293333 MeV. Meanwhile, the electron mass is known
with great precision, and is listed in 2012 PDG data [21] as m,. = 0.510998928
MeV. This is all well known, and it is believed that the discrepancy between
1.293333 MeV and 0.510998928 MeV all arises due to the dynamical, non-
linear interactions within the proton or neutron. If the “noise” of all this
interaction was to be shut off, it is believed, then this discrepancy would
vanish, and the electron mass m, would be virtually identical to
AE=E -E (Because neutrinos emitted during beta decay

Neutron Proton *

n— p+e +v have such a small (<2 eV) mass, we neglect any such mass.)

But as just noted following (11.7), the proton and neutron expressions
(11.8) and (11.9), or (11.3) and (11.4), were all developed for zero
perturbation V — 0, because we have zeroed out any perturbative terms
throughout this development, and are further designed from the pure gauge
fields only to filter out all vacuum effects. In common nomenclature, wherein
the “current quark mass” is understood to represent the “constituent” or
“effective quark mass,” reduced by the mass of the respective “constituent
quark coverings” arising from gluon fields and vacuum condensates
surrounding the “current quarks,” we have in this development turned off all
“coverings,” of any origin. So, having stripped out the coverings, and solely
looking at the “current quark masses,” what (11.12) tells us is that the AE we
will deduce from (11.8) and (11.9) is not from the difference between the
total, covered masses of the proton and neutron, but only from the difference
between that portion of the total mass that is directly contributed by the
current quark masses. In other words, (11.12) as based on (11.8) and (11.9) is
a difference between two bare, uncovered nucleon masses, which turns off the
noise, and gets to the underlying undiluted “signal” arising from the current
quarks only. As such, we should expect that E =AE=E -E

because our neglect of all perturbations and vacuum effects allows us to look
at uncovered nucleon masses.

The “current” (uncovered) masses of the up and down quarks are
m, =4.8"7 MeV and m, =2.3"] MeV based on the most recent PDG data [22].

So based particularly on (11.12), we should see if the electron rest mass can in

Electron Neutron Proton
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fact be described in relation to these current quark masses, based on the
relationships (11.8) and (11.9). Indeed, precisely because our development
has turned off all perturbations and vacuum effects, we should not only expect
this to work, but this must work in in order to validate the thesis we have
presented. That is, we arrive at a point where our thesis and the development
so far may be contradicted, if nature chooses to do so. So, let’s do the
calculations:
First, subtracting (11.8) from (11.9) to flesh out (11.12), we write:

J‘J‘J‘3{Wd v}’ ]Wd v, ﬂvyv]Wd W [7/ vy ]W V. ﬂvy"]w d3x (11 13)

"

llp _m llpu_mu llp _m
Then, we use the ansarz (9.9) in (11.13) to obtain:
—r P\ dlpteyt ldd d
1 6eX [_2(}’ ro) } [7/ 4 ] [;/,uvyv]

" "2

2 J—
=—4[[J3 g A S Px. (11.14)
1 [ (r—ro)Z]u[y”vyv]uu[nvn]u
— XD -2 > - —
TR, i P, —m,

Above, d(p), u(p) are Dirac spinors for the up and down quarks, respectively.
Now, we may make use of (9.11) refashioned via scaling & — #/~/2 , namely:

2
m exp[ rx—,:")jfle (11.15)
to evaluate the Gaussian integral in (11.14). This means that:
2
”I 31 5 ©XP _2M d3x=+- (11.16)
TR A (z) 1

Then, we use (11.16) in (11.14) to obtain:
AE = _1 3{ 1 dpytylad ﬂv%]d_ 1 iy ]W[?’ 7@] ](11_17)

2 n2

*lea)rr P —my (z)x,’ P —m,

Now, as a ftest hypothesis, let us see what occurs if we regard
A =h/mc as the reduced bare (uncovered, “current””) Compton wavelength of
the associated quarks. With Z=c=1, this allows us via m=1/X to directly
employ quark masses in (11.17) instead of X, thus:

m, Aoy ladly, v ld wmp uly sy luly, 7,
eaf ham”

AE=-1.3

2

: (11.18)
P, —m, (Q,ﬂ')E upu_mu
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By our test hypothesis A =#/mc, the mass scale for AE has now been
established, as has the mass scale for the proton and neutron masses, and it is
not the GUT scale. Importantly, and appropriately insofar as experimental
observations are concerned, this mass scale is set by the masses of the up and
down quark that comprise the neutron and the proton, rather than by the GUT
energy of symmetry breaking. So the Gaussian ansatz (9.9), if we use
A ="h/mc, gets us into the right “ballpark” in orders of magnitude. And, it
makes simple sense that the proton and neutron masses should be related in
some fashion to the masses of the quarks of which they are comprised. We
see that all the mass dimensions in (11.18) are correct, so long as we choose a

normalization in which the Dirac spinors are dimensionless. We shall do so

momentarily. But next, we come to the "p—m'" propagator denominators.

For this, we refer back to Figure 1 at the start of section 3, and also
keep in mind section 12.2 of [5]. Specifically, we consider the circumstance
in which the interactions shown in Figure 1 occur essentially at a point. In
that situation, the propagator disappears, the s and ¢ channels become

indistinguishable, and we can set "p—m" —m’ in (11.18) above. So, also
applying (3.10) which defines ,=1 and reverting from the quasi-commutator
to the ordinary commutator, (11.18) becomes:

. (22)3 o, -aly* y adly, v Ja =m, -y y by, 7, Ju)- (11.19)

AE =—

The remaining terms E[}/“,}/V]dg[}/ﬂ,yv]d and ;[y”,yv ]u;[;/ﬂ,yv ]u are
scalar numbers. They need to be normalized via the Dirac spinors into a
dimensionless constant number K, so the only question now is to find the right
normalization. For the moment, K zZ[yﬂ,;fV]dZ[yﬂ,yv]d =ﬁ[y”,;/v]u;[7ﬂ,;/v]u
is defined to be a dimensionless experimental constant, and we take this K to
be an unknown. Now, (11.9) may be further reduced to:

AE=—1K-——(m, —m,)- (11.20)

@ry

Now, we simply plug the experimental m, =4.8"] MeV and m, =2.3"] MeV

from [22] into the above, to obtain:

AE=-1K-3(m,—m )/(2x) =-1K 3(4.8"7-2.3"7)/(2x ) MeV
=-1K.476 72 MeV =—1K (286 MeV to.704 MeV) .  (11.21)
= 1K -.495MeV
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This displays the predicted AE=E E

Proton

based on the up and down

Neutron

quark masses. Following (11.12) we suggested that this difference should turn
out to be the electron rest mass, because we have turned off all the “noise” that
distorts what is otherwise the electron mass into a AE of 1.293333 MeV
between the observed, unbound, noisy, fully covered proton and neutron
masses. The experimental electron mass, of course is m, = 0.510998928
MeV. Using the high-side “down” and the low-side “up” masses, the high end

of the term 3(m, —m )/(2z) = 704MeV . Using the low-side “down” and high-

side “up” masses, the low end of the term 3(m, - mu)/(27r)% =.286MeV . Using
the experimental mean for the up and down, however — and this is the striking
result — this anticipated value of 3(m, —m )/(2z) =.476MeV ~And, the mean

(denoted by the overbar) of the range between .286MeV and .704MeV is
0.495 MeV. The electron mass 0.510998928 MeV is perhaps one of the most
tightly known natural constants, and so the 0.495 MeV electron mass
predicted from the median of the experimental data differs only about 3%
removed from the actual experimental mass! Not only is this prediction in the
right ballpark, it is centered in the middle of a fairly wide experimental range,
and so would appear to provide direct and compelling experimental
confirmation that Yang-Mills magnetic monopoles as developed here, truly
are baryons!

Given the closeness of the 3(m,—m, )/(2z) to the experimental

electron mass based on the quark mass data, let us now regard the electron
mass m, to in fact be related to the quark current masses, precisely, by

Eg.onon =M, =AE, and let us introduce this as a hypothesis supported by the
experimental data. That is, we now hypothesize based on empirical data that:
m, =0.510998928 MeV = AE=—>—(m, —m,)- (11.22)

(2}
This filters out the “noise” of the interactions within the proton and neutron,
and shows the real “signal” behind the noise, which signal is the electron
mass. It also makes general sense that the electron mass turns out to be a
constant times the difference between the up and down quark masses, with the
only real question being: what is the mathematical and physical basis for
specifying that constant? As it turns out, the factor of 3 emerges from the

S(al2 —uz) schematic in (11.12) (and also happens to be the number of quarks in

each nucleon) and the factor of (27)° comes straight from Gaussian
integration over three dimensions. Given that the electron mass is known with
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much more precision than the loosely-determined quark masses, we then use
the electron mass to reverse the tables and predict with precision, the
difference between these quark masses:

m,—m, = @m = 2.6826779329 MeV (11.23)

This is a very precise number, and may be used to better constrain our
the data for the current quark masses. Specifically, using m, =4.8"] MeV and

m, =2.3"TMeV, (11.23), in light of a 2.5']2 MeV spread between the midpoint

-1.0
experimental data, tells us that the actual spread is slightly higher than the data
indicates. Since there is more error on the high side of the down mass and less
error on the low side of the up mass, the down mass is likely higher than 4.8
MeV, perhaps between 4.9 and 5.0 MeV and the up mass is likely a touch
lower, perhaps 2.25 MeV. On average, the true masses should be about 3%
higher based on (11.21). If we use (11.22) in an identity as:

m, = M=, @z om (11.24)
I-m,/m, 3 1-m,/m,

then because m, —m, is now known with great precision from (11.23), the
experimental determination of these quark masses can be made more precise
to the degree that we can better tighten the ratio m,/m, .

Now, let’s tie up the normalization, taking (11.22) as a given,
empirical relationship. We combine (11.20) with (11.22) to find that:

~2=k=dly* v ladly,. v Ja =uly',y Juuly, .7, Ju. (11.25)
The experimental constant K =—2, now known, may now be discarded. What
counts is that the spinors themselves now be normalized such that they accord
with the empirically-based relation (11.25). We shall work with the “up”
spinors, since the calculation is the same for either up or down. We first
expand (11.25) using g, =17, :

—uy' Y ey Yu—uy'y wy’ Yu—uy'y wy’vu| (1 26
+uy' V uuy' Yu+uyy uuy yu+uy’y uuy’ y'u

We will want to calculate this with a sum over particle spin states for all the
spinors. We first make use of Tuu=N*(p+m)/(E+m) (see (3.1)) with an

~2=uly*. 7 hauly,. 7 Ju=3

undetermined real normalization N. Via p=p ﬂ}’” , (11.26) becomes:



W7 u=—uy'y (p+mly'y uj
W urury (prm)yyu ). (11.27)

u(p—mu

g N[~ )y Y umuy Y (pam
E+m{+uy'y* (p+m)y'y’ u+uy’y’ (p+m

2

2

g N N
E+m E+m
It is easy to show using Dirac spinors in the usual way, summing both particle

spin states, that muu = 4N >m> /(E +m). On the other hand, we recognize that

(pﬂﬁyﬂu—ﬂn;u}:48

pﬂﬁy" u is a variant of the conservation equation d,/*=0 written in

momentum space. So we mandate p, uy” u =0 by continuity. Thus, we can

use these two results in (11.27) to write:

2 —_ —_ —_ —_
—2=—192N4m7)2=d[7“,7v]dd[7wn]d =uly,y Jly,lu. (1.28)

(E+m

which means that:

1 VE+m N2:LE+m, (11.29)

NS A Var 2m

This is a dimensionless covariant normalization which keeps the Dirac
spinors dimensionless, and which embeds into the Dirac algebra, the empirical
relationships (11.22) and (11.23) between the quark and electron masses. In
other words, the normalization (11.29) fully implements (hard-wires) the

relationship (11.22), m_=3(m, —m, )/(27[)% — which appears to yield the
correct experimental relation between the electron mass and the up and down
quark masses — into the Dirac algebra via the normalization of the Dirac
spinors. To be clear: this is an empirical normalization, handed to us by

3
2

nature, which reflects that m_ =3(m,—m )/(2z) appears to be an

experimentally-correct mass relationship. We note, simply as an observation,

via the Levi-Civita tensor in spacetime, that 4!= —gﬂmﬁg”mﬁ , and that

(E+m)/2m =1 in the fermion rest frame E =m. Also, for any 4x4 matrix M
in spacetime, the determinant |M | = €,56M “M AM7”M? has 24 additive

terms. So the factor of 4!, while it emerges to implement an experimental
mass observation, is a real integer number which does play a central role in
field theory in four spacetime dimensions.

Moreover, we also observe that 4!=4x3x2 is the number of known
fermions of all flavors and colors and generations, and further describes the
way in which these fermions are structured, as can be seen from Figure 3
below in which: LRGB represents leptons as a fourth color of quark at high
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energies as discussed in section 7; e,u,7 represents the three fermion

generations; and 1, represent isospin up and isospin down:
—3=eur — —3=eur —

T v, Vv, V, e U T
= Up Cg Iy dy sz Dby
LRGB U, ¢q g d, s, b
J Uy, Cp Iy dy, sz by
—2=M-
Figure 3

Therefore, if we let n, =24 =4! represent the number of fermions known in

the natural world, the normalization (11.29), which applies to each individual
fermion 1in this chart of 24, may be written on an entirely physical basis,
without any “mysterious” numbers, as:

yio L(E+m) 1 (E+m) (11.30)
ng (2m)2 24 (2m)2

While beyond the scope of this paper, this is suggestive of some sort of
fermion “completeness relation” that entails accounting for all twenty-four of
the fermion flavors shown in Figure 4 when normalizing individual Dirac
spinors. We write (11.30) as N, because this is the power in which the
normalization enters invariant amplitudes. So an amplitude which sums over
all fermions will be summing a term with a 1/24 coefficient, over 24 distinct
terms, one for each flavor of fermion in Figure 3.

Let us finally tie up one remaining aspect of section 10 and Figure 2,
as to the short range of the nuclear interaction. In section 10, the reduced
wavelength & was simply a parameter of the Gaussian ansarz (9.9). And we
noted following (9.12) and again following Figure 2 that the Gaussian
standard deviation o =ﬁ7&. But now, following (11.18), we set A =#h/mc

to be the reduced Compton wavelength of the current quarks, and this led to
the empirically-correct mass relationships (11.21)-(11.23). But given the
current quark masses m, =4.8"; MeV and m,=2.3"IMeV, and using the
conversion scale 1F =5.07GeV ™ =1/(197GeV ), this means that X, ~85.65F
and A, ~41.04F, to which the standard deviation in Figure 2 is related by
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o= %7& . This, of course, gives the nuclear interaction a short range, but not

short enough, because the nuclear interaction is known to have a range on the
order of 1 to 2 Fermi. So how do we explain this?

We now keep in mind that we have been using current quark masses
which turn off any coverings due to perturbations of vacuum effects. But
when we actually observe nuclear interactions, we are of course observing
interactions based on the effective, constituent quark masses. If for very rough
measure, we take these to be equal to 1/3 of the mass of the proton or neutron,
say 939 MeV/3=313 MeV, then we have A ~.63F and o =4k~ 45F . So

now, the standard deviation for Figure 2 is slightly less than .5 F. Figure 2
and the discussion following then tells us that the nuclear interaction virtually
ceases to be effective at about 40 ~ 3% ~2F . So now, Figure 2, with A based
on constituent quark masses, depicts just the right distance for the short range
of nuclear interactions, which are now predicted to become insignificant at
about 2 F.

12. Quark Confinement Results from Predicted Binding Energies which
Coincide Extremely Closely with Nuclear Binding Energies

Finally, with the empirical fermion normalization (11.30) in place, we
can directly derive the proton and neutron masses. However, because we have
turned off all perturbation and turned off the vacuum, the masses in (11.8) and
(11.9) are not expected to be the observed masses. Rather, these will the
structural proton and neutron masses based only on the current quark masses,
with no perturbations and no accounting for vacuum condensates. These,
once again, are “signal” relationships with “noise” stripped out. While these
masses are given formally in (11.8) and (11.9), the schematic relationships
(11.10) through (11.12) provide a shortcut to calculate these masses. If we
compare (11.12) to our eventual result (11.22) for the electron mass, we may
schematically express this as:

Ep <3d>-u?)= Ey. =3(m,—m )/(Q27). (12.1)
The key thing that we learn via the Gaussian integration, is to use the three-

Electron Electron

dimensional Gaussian integration number (2z)° as a divisor to find the correct

mass relationships. Careful consideration of (11.8) through (11.11) and the
Gaussian ansatz should make clear that the proton and neutron structural
(noise-free signal) masses follow an identical pattern, i.e.:

E, < d*+4ud + 41> = E, = (m, + 4 fm_m, +4m )2z ), (12.2)
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Ey o u® +4ud +4d*> = E, = m, +4fm.m, +4m, )2z . (12.3)
Then, making use of the mid-valued experimental quark masses from [22]
(which we know from (11.21) are low by about 3%), we obtain:

E, = (m, + 4fm,m, +4m, )12} =1.733MeV (12.4)
E, = (mu +4\m m, +4m, )/(27[)% =2.209MeV . (12.5)
This proves in energy terms, that these magnetic monopoles are topologically
stable with definite, finite energies.

Now, while (12.4) and (12.5) seem odd at first blush in light of Ey =
939.565379 MeV and Ep = 938.272046 MeV, this is actually a fascinating and
very revealing result: We have turned off all perturbative terms, which means
that “interaction” energy and other “noise” accounts for about 99.8% of the
observed mass of the proton and neutron, according to the above. The
underlying quarks, absent interactions and absent vacuum effects, appear to
contribute only about 0.2% of the total. But of even more interest, is this: If
the “naked” proton and neutron masses were simply a linear sum of their
component quark masses which are m, =4.8"]MeV and m, =2.3"] MeV

=9.4MeV
=11.9MeV based on the PDG experimental means. So here, “the

based on the best PDG data, we would expect to have about E,_
and F,

‘Neutron
whole is a lot less than the sum of the parts,” and there is a stunning energy
diminution. What does this mean that we can put three quarks together and
have a system where the total mass is less than 20% of the mass of the
component quarks, before we turn on the perturbative interactions? Imagine
putting ten pounds of anything into a black box, and then finding that the
black box weighs less than two pounds. It means that there is a fantastically-
large, intrinsic, negative binding energy holding these quarks together in a
confined system!

We can calculate this inherent binding energy B directly: Using the
additive relationships £, =9.4MeV =m, +2m,, Eg,..,=11.9MeV=m, +2m,
for mean data per above, and (12.4) and (12.5), the inherent proton and
neutron binding energies, respectively, are simply:

B, =2m, +m, —(m, +4fm_m, +4m, )/(2x) =9.4MeV ~1.733MeV =7.667MeV (12.6)
By =2m, +m, —{m, +4fm m, +4m, )/(2x) =11.9MeV —2.200MeV =9.691MeV -(12.7)
For a system with an equal number of protons and neutrons, the average
binding energy per nucleon will then be:

B =(7.667MeV +9.691MeV )/ 2 =8.679MeV (12.8)

roton
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This is a fascinating result, because these are exactly the magnitudes of per-
nucleon binding energies that are observed throughout nuclear physics for all
elements from He* and C'? through the balance of the periodic table, as shown
in Figure 4 below which can be obtained in like-form from virtually any
hardcopy or online reference on nuclear physics. Is (12.8) a prediction that
the per-nucleon binding energy is between 8 and 9 MeV, which is exactly
what is observed throughout Figure 4? 1If so, then the validation of the thesis
that baryons are Yang-Mills magnetic monopoles advances well beyond
predicting the electron rest mass from the quark masses in (11.21)-(11.23), to
perhaps predicting the precisely-known binding energies that permeate nuclear
physics. How might this work?
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Figure 4
Based on the data in Figure 4 and (12.6)-(12.8), what one might
observe as a preliminary matter is the following: First, when we state that the
neutron and proton masses are Ex = 939.565379 MeV and Ep = 938.272046
MeV, we have to be careful to be clear that these are unbound masses for free
nucleons, as we were with emphasis following (11.12). Fuse a proton and a
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neutron into a deuteron (H2 nucleus), however, and the mass of each is
reduced by a well-established binding energy per nucleon of
B, /2=1.112283MeV , the first non-zero data point in Figure 4. (In general,

for the discussion to follow, we shall use binding energies calculated from
nuclei masses in [23].) Fuse two of these into a four-nucleon alpha particle
(He" nucleus) and the binding energy per nucleon spikes rapidly to just over 7
MeV per nucleon, entering the range predicted in (12.8). Why is He*
understood to spike so quickly, whereby the Li and Be nuclei drop back down
to under 6 MeV per nucleon before C and N rise back to about 7.5 MeV per
nucleon before the heavier elements move smack into the middle of what is
predicted by (12.8)? Because for the He' nucleus, all of the nuclei (two
protons and two neutrons, one each with spin up, one each with spin down)
can remain in a ground state, but for any element that has more than 4 nuclei,
the remainder of the nuclei must go into higher energy states because of the
fermion Exclusion Principle. This means that some of the nuclei in Li and Be
must “steal” some of the energy that is otherwise available for binding, and
instead use this energy to excite to a higher energy state to be able to coexist
in the same nucleus with the first four nucleons of the alpha particle. All of
these observations are part of the known understanding of Figure 4.

So based on these observations, one might fashion the following
preliminary explanation of what (12.6) — (12.8) are saying: Each nucleon
apparently has what we shall refer to as a “latent binding energy,” or “energy
available for binding.” When a nucleon is free, all of that binding energy is
contained within the nucleon, and serves to confine the quarks within the
nucleon through intra-nucleon binding. This confinement is structural based
on differential spacetime geometry, as established in section 1. But to fuse
one nucleon with another nucleon, some of that internal “latent” binding
energy must become devoted to binding together the two nucleons. So in the
deuteron, B, ,/2=1.112283MeV per nucleon is channeled into the fusion of the

two nucleons (and thus is released as fusion energy) and the total masses
(including the observed masses) of the proton and neutron drop slightly by an
equivalent amount. Some, but not all, of the latent binding energy has now
gone into inter-nucleon binding, rather than infra-nucleon binding. As one
goes up the nuclear mass scale, more and more of the latent binding energy is
apparently channeled into inter-nucleon binding, and less into intra-nucleon
binding. And some of that energy — for which Li and Be are good examples —
can be channeled into providing the energy needed for the “fifth” and
additional nucleons to excite into a higher energy state so that they can fuse to
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the rest of the nucleus. So what (12.6)-(12.8) appear to be saying, in this
context, is that each nucleon has available for binding, a maximum latent
binding energy of about 7.7 MeV per proton and 9.7 MeV per neutron. How
much of that is used, and what it is used for, depends on the particular nucleus
that one seeks to fuse together.

Let’s go a step further and look at Fe’® and Ni®*, which have the
highest binding energy per nucleon of any nuclei, and are highly illustrative.
Fe™ contains 30 neutrons and 26 protons. Based on (12.6) and (12.7) (which
again, are based on quark masses that appear to be about 3% off on the low
side), one would expect a total binding energy of 490.072 MeV. The observed
experimental biding energy is a remarkably-close, slightly higher 492.253892
MeV. Ni® contains 34 neutrons and 28 protons. Based on (12.6) and (12.7),
(again, about 3% low) one would expect a total binding energy of 544.17
MeV. The empirical binding energy is the slightly higher 545.259 MeV.
What does this mean?

First, the closeness of these numbers is further validation of the thesis
of this paper that baryons are indeed Yang-Mills magnetic monopoles.
Second, however, the empirical binding energies should in principle be
slightly lower rather than slightly higher than the theoretical maximum
available for binding via (12.6) and (12.7), otherwise it would become
possible to de-confine quarks which must in principle be impossible based on
section 1 as well as a general understanding of confinement principles. As we
shall momentarily show, the 3% correction noted in earlier in (11.21) will fix
this, so that no nucleus will exceed the maximum available latent binding
energy. Rather, these “lightest per nucleon” nuclei Fe’® and Ni® will use up
just a tad less than the total available binding energy, with (12.6) and (12.7)
(with energy numbers we will shortly update) establishing in principle energy
limits.

As to the lighter elements, the amount of latent binding energy used
for actual binding is lower, but let’s look at the very lightest nuclei containing
more than one nucleon. First, the H* deuteron which consists of one proton
and one neutron, as a “two body” system, is the very simplest composite
nucleus, and is known to have a binding energy B , =2.224566MeV . This is

intriguingly close to the mass of the up quark m, =2.3"7 MeV, especially since
there is a good likelihood that the up mass is just slightly smaller, as suggested
following (11.23). Might it be that m, =2.3"] MeVZBH2 =2.224566 MeV are

one and the same, i.e., that the deuteron binding energy is another “signal,”
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like the electron mass, which cuts through the “noise” of the nucleons to tell
us what is really going in inside? Specifically, might it be that the deuteron
binding energy is a signal that tells us the exact current mass of the up quark?
If this is so, then the up and down quark masses can be calculated to six-

decimal precision in MeV using B, , and (11.23).

Based on the tantalizing closeness of these energies, let us introduce
the hypothesis that this is so, i.e., that:

m, =B, , =2.224566 MeV , (12.9)
in which case, via (11.23), we may obtain with similar precision:

_(x) _
my ==, m, = 2.6826779329 MeV +2.224566 MeV. (12.10)

=4.907244 MeV
and the ratio:
m,/m, =.4533229 . (12.11)
Both of these masses fit well within the current quark masses m, =2.3"] MeV
and m, =4.8"] MeV given in [22] and the ratio m,/m, =.46(5) in equation
[5] of [24]. We shall momentarily discuss the theoretical basis upon which
this hypothesis might be justified, but first, let’s do some calculations.

If hypothesis (12.9) is true, then via (12.6) and (12.7) we may do a
more precise calculation:

3
2

By, =2m, +m, — (md +44m, m, +4mu)/(27r)
=7.640679Me V

B, =2m,+m, — (m +4ym m, +4m, )/(2;:)% =12.039054 MeV —2.226696 MeV (12 13)
=9.812358Me V

Based on the discussion preceding (12.9), this says that every proton in a

nucleus has a latent (maximum available) binding energy of 7.640679 MeV,

and every neutron has available 9.812358 MeV. For a free, unbound nucleon,

all of this energy is used to confine the quarks within the nucleon. But when

one nucleon binds to another, some of this energy is released as fusion energsy,

and an equivalent deficit of energy goes into binding the nucleons. For Fe 6

with 26 protons and 30 neutrons, we may calculate that this maximum

available binding energy is:

B, (Fe™)=26x7.640679MeV +30x9.812358MeV =493.028394MeV (12.14)

max

=9.356376 MeV —1.715697 MeV (12.12)

What does the empirical data show to be the actual binding energy?
492.253892 MeV! So precisely 99.8429093% of the available binding energy
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predicted by this model of nucleons as Yang-Mills magnetic monopoles goes
into binding together the Fe’® nucleus. The remaining 0.1570907%, which is
equal to .774502 MeV total, or a relatively scant 13.83040 KeV per nucleon,
goes into confining the quarks within the nucleons. A calculation similar to
(12.14) based on (12.12) and (12.13) for Ni*® reveals a predicted available
binding energy of 547.559184 MeV compared to an empirical binding energy
of 545.2590 MeV. So Ni* uses 99.57992% of the available binding energy,
with the balance continuing to confine the quarks. Calculations for other
nuclei and isotopes and isobars reveal that no known nucleus ever gets up to
using 100% of the available binding energy, and that Fe’® achieves the
maximum utilization at 99.8429093%. This appears to provide compelling
experimental validation that baryons, including protons and neutrons, are
indeed Yang-Mills magnetic monopoles.

What would it mean to get over 100%? It would mean that the balance
has been tipped, so that the energies within individual nucleons would no
longer confine the quarks, but would free them. The peak in Figure 4 at Fe®,
is nature saying that she will never allow quarks to be de-confined from a
nucleon, any more than she will allow material signals to reach the speed of
light! Fe™ is the closest that one can come to taking all the energy that is used
to confine the quarks inside a nucleon, and using it to instead bind nuclei
together. But even here, we never get to the point where we can remove the
quark from a nucleus; we only approach a natural limit. There is always ar
least 13.83040 KeV per nucleon continuing to confine the quarks, even for
Fe™. After reaching these peaks at Fe’® and Ni%, the Figure 4 curve heads
back down into the fission zone, and the quarks again become more tightly
confined inside the nucleon. While quarks always stay confined, however,
this does suggest that Fe™ and Ni® and other nuclei which commit a very high
percentage of available binding energy to inter-nucleon binding are the best
nuclei to use, experimentally, in order to observe the behaviors of quarks
inside the nucleons. This is because for these nuclei, the intra-nucleon
energies confining the quarks inside the nuclei are at their lowest strength,
having all been channeled into infer-nucleon binding. In these nuclei, quarks
have more freedom, asymptotic and otherwise, than in any other nuclei.

While the hypothesis (12.9) that m, =B, , appears to be confirmed

based on the empirical data, both directly and via (12.12) to (12.14) deduced
therefrom, it is important to try to understand the theoretical reasons why
(12.9) would make sense. Figure 4, which is entirely empirical, makes clear
that to fuse a nucleon to any given nucleus, the amount of energy which is
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either liberated (fusion) or needs to be supplied (fission) is a discreet amount
of energy. For example, in fusing a proton and a neutron into a deuteron, one
will liberate exactly 2.224566 MeV (equation (12.9)) of energy, each and
every time, as opposed to some continuous spread of energy. To add another
neutron to a deuteron to form the tritium H’ isotope with a total 8.481799
MeV binding energy, one will liberate exactly another 6.257233 MeV, which
is the difference between the H* and H® binding energies. Not a continuous
spread. The same, discrete amount of energy, each and every time. What
determines that precise energy values like these, and no others, will be
released (or must be supplied)? Hypothesis (12.9), which leads to predictions
such as (12.14) which are borne out by empirical data binding, adds new
information to the semi-empirical Bethe-Weizsicker mass formula which
accounts for binding energies in general terms based on nucleus volume in
light of limited nuclear range, surface versus central position of particular
nuclei, Coulomb repulsion between protons, and exclusion based on both spin
and internal symmetry quantum numbers. What (12.9) adds to all of these
considerations, is this:

Take a proton and a neutron. Think of each as a resonant cavity. Try
to fuse them into a deuteron. Experiments tell us that the same amount of
energy — 2.224566 MeV — will be released each and every time following a
successful fusion. Some attribute of these two nucleons must determine that
this amount of energy is 2.224566 MeV, and not some other energy. So what
is that attribute? Each of these nucleons contains up quarks and down quarks.
These have associated Compton wavelengths. Not unlike in the early Bohr /
deBroglie models used to explain atomic spectra, those wavelengths will
establish preferred, discreet resonant energy levels which can be detected, to
the exclusion of all other energies which cannot be detected. And nature will
follow least action principles and so choose a lower energy level (such as that
set by the up quark) over a higher energy level (such as that set by the down
quark) whenever it can. So to create a two body system — a deuteron — from a
proton and a neutron, the energy released resonates precisely with the mass of
the down quark, which is why 2.224566 MeV is both the mass of the up quark
and the energy released in this simplest, most elemental fusion of a proton and
a neutron into a deuteron. The energy released from this fusion (and
presumably other fusions) appears to depend on what wavelengths “fit” with
respect to the components being fused. And at least for fusing a deuteron, the
wavelength / mass that “fits” is established directly, equivalently by the mass
of the up quark which is contained twice in a proton and once in a neutron.
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To start with a deuteron H* and add another neutron to form an H’
trittum nucleus (which does not add the complication of a p—p repulsion that
occurs for He?) then also becomes a problem of asking: what resonates? But
now, the problem is a three body problem. One of the “cavities” is now a
deuteron. So while the empirical answer is 6.257233 MeV, there is no simple
apparent way to get this number, at least linearly, from (12.9) and (12.10).
But, to find the basis for this 6.257233 MeV energy needed to go from H* to
H? adds another consideration to the semi-empirical mass formula: what is the
lowest energy, most natural resonance of the two systems that one is trying to
fuse, namely, an H? and a neutron? That resonance is 6.257233 MeV, and
some careful analysis of the resonance between a two body system and a one-
body system, together with some employment of the quark masses (12.9),
(12.10), should yield that number.

So, in sum, (12.9) becomes justified for a deuteron on the basis of the
proposition that the fusion resonance for a cavity (proton) that already
contains a quark with a mass of 2.224566 MeV with a second cavity (neutron)
that also contains a quark with a mass of 2.224566 MeV, is just that mass:
2.224566 MeV. For other nuclei, this introduces a resonant cavity analysis to
supplement the other considerations in the semi-empirical mass formula.

This also leads one to consider the technological possibility that a new
type of “resonant fusion” in which nuclei are bathed in oscillations at their
known binding energies, might serve to catalyze fusion and extract energy
without the need to supply excessive heat or large particle accelerations.

And, (12.12) and (12.13) modify our thinking about Bethe-Weizséicker
in one other very important way: the first two terms of this formula,

a,A+a,A*”, where A is the number of nucleons, are designed to account for

the volume and surface geometry of a larger nucleon based upon the fact that
because of the short range of the nuclear force (see Figure 2 in section 10 and
the discussion at the end of section 11 suggesting a standard deviation of
0 =R ~.45F for nuclear interactions and a virtual cessation of interaction

at around 40 = 3K ~ 2F ), each nucleon will only interact with its immediately-
adjacent neighbors, and nucleons on the surface will have less neighbors with
which to interact. But (12.12) and (12.13) introduce the same considerations
from a different standpoint: it sets in very precise terms, a maximum available
binding energy, and that energy limit flows from the Gaussian distribution of
Figure 2 for the field flux across any closed surface. That is why the first two

terms of Bethe-Weizsiicker are a, A +a A*", rather than a, A* +a,A"".
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To further develop this preliminary understanding of nuclear binding,

it will be very useful to carefully scour the wealth of data for various nuclear
isotopes and isobars to see exactly how much binding energy is added or
subtracted each time a proton or neutron is added to or removed from a
nucleus, and compare those with the predicted binding energies in (12.12) and
(12.13), as this may provide a more “granular” insight into the specific data
points on nuclear binding charts such as Figure 4. For example, start with
Fe™. Add a single neutron to turn it into the Fe’’ isotope. The empirical data
shows that this adds 931.919288 MeV (with no new electron) to the atomic
weight of Fe™® while adding one more neutron with an unbound mass of
939.565379 MeV. So, the additional binding energy introduced (and the
fusion energy released) by adding this one neutron is:
B(Fe”)— B(Fe™) = 7.646090 MeV (12.15)
This empirical binding energy differs from the theoretical prediction of
7.640679MeV in (12.12) for the intrinsic binding energy of a proton, by a
paltry 5.412 KeV, or 0.0708%. Apparently, adding one neutron to Fe®,
within a small fraction of one percent, liberates an intrinsic binding energy
virtually equal to that of a single proton. Similar exercises for other isotopes
and isobars of all nuclei should be quite instructive, and with (12.12) and
(12.13) available for guidance, can help us better understand what happens
each time one adds or subtracts a proton or a neutron to or from a nucleus, and
how the biding energies are allocated.

But the seven parts in ten thousand closeness of the empirical energy
(12.15) to a predicted energy in (12.12), taken together with all of the other
predictions in Sections 11 and 12 which appear to be experimentally
supported, cannot be dismissed as coincidence. There are too many such
predictions, they are all intertwined, and they all come too close to
observational data to be merely coincidental.

All of this, and especially the 99.8429093% of the available binding
energy which goes into binding together the Fe™ nucleus, and the fact that
nothing goes overl00%, brings us full circle back to where we started in
section 1, when we showed how Yang-Mills magnetic monopoles naturally
confine their gauge fields, and how this was due to the very structure of
spacetime via Gauss’ / Stokes’ integration and the geometric relationship
dd=0. Now, in (12.12) and (12.13), when we are finally looking at energies,
we see that once three quarks are put into a baryon, the very structure of the
baryon creates an intrinsic latent binding energy that is equal to more than
80% of the component quark masses. This latent binding energy is
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fundamental to the structure of baryons. As we showed in section 1,
confinement flows from the very structure of spacetime, and as we showed
here, it explains with precision the experimental data for nucleon binding of
the heaviest elements and especially explains why Figure 4 has a maximum
binding energy per nucleon which is never exceeded and grows smaller as one
moves away from the fusion / fission boundary.

So, expressed in terms of proton and neutron energies, quark
confinement is signaled by the fact that for three quarks in a baryon, there is
an inherent negative latent binding energy that is equal to more than 80% of
the quark masses themselves, and that even for the most tightly bound nuclei,
some small amount of energy from this binding energy reservoir is always
retained to keep the quarks confined. This is how the energy physics of a
baryon conspires to keep the quarks confined. When nucleons are fused, some
of that binding energy migrates into a negative binding energy holding the
nucleons together to form nuclei and a positive equivalent is released as fusion
energy. If one can maximize the latent binding energy that goes into inter-
nucleon binding, the confinement of the quarks within any given nucleon does
loosen up, because the latent binding energy is used less for confinement and
more for actual inter-nucleon binding. In an iron nucleus, for example, quarks
will come close (within 0.16% per nucleon) of being able to deconfine from
the nucleus. But one never quite goes beyond that, because precisely at the
point where the quarks comes closest to deconfinement, one starts onto the
downward fission slope where more, not less, of the latent binding energy
starts to go back into keeping quarks confined. So, the well-known empirical
peak in Figure 4 is fundamentally a confinement phenomenon whereby quarks
step back from the brink of becoming de-confined in Fe’®, and remain
confined in principle no matter what the element. Iron-56 thus is seen to sit at
the theoretical crossroads of fission, fusion, and quark confinement.

Knowing now that nucleons very likely are Yang-Mills magnetic
monopoles, and given the stark binding energy “tea leaves” just noted, it may
become possible to develop a more coherent and detailed granular
understanding of nuclear structure. Such an understanding, in light of what
has been developed here, now boils down to understanding in detail, how
collections of such magnetic monopoles — which monopole collections we
now understand to be nuclei when the monopoles are protons and neutrons —
organize and structure themselves.
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Conclusion

The very vast preponderance of the material universe consists of
baryons, and particularly, protons and neutrons. The results developed here,
especially the empirical concurrences developed in sections 11 and 12, firmly
validate that for non-commuting Yang-Mills gauge fields, the long-sought and
ever-elusive magnetic monopoles of Maxwell do exist in the physical world,
everywhere and anywhere that there is matter in the universe, hiding in plain
sight, in the form of protons and neutrons!

These Yang-Mills Magnetic Monopoles naturally confine their gauge
fields, naturally contain three colored fermions in a color singlet, and mesons
also in color singlets are the only particles they are allowed to emit or absorb.
SU3)c QCD as it has been extensively studied and confirmed is understood in
broader context, with no contradiction, to be a consequence of baryons being
Yang-Mills magnetic monopoles. Protons and neutrons are naturally
represented in the fundamental representation of this group. The t’Hooft
monopole Lagrangian with a Gaussian ansatz for fermion wavefunctions
demonstrates that these monopoles can be made to interact only at very short
range as is required for nuclear interactions. These monopoles are
topologically stable following symmetry breaking from an SU(4) group using
the B-L (baryon minus lepton number) generator. The mass of the electron is
accurately predicted based on the masses of the up and down quarks to about
3% from the experimental mean for the quark masses, and confinement of
quarks occurs energetically via fantastically strong negative binding energies.
And, the predicted binding energies per nucleon are completely consistent
with experimental data. All of this compels serious consideration and further
development of baryons as Yang-Mills magnetic monopoles.
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