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Abstract:

We demonstrate how the existence of baryons, tha, strongly-interacting sources
consisting of exactly three fermion constituents,si a natural consequence of Maxwell's
equation for a magnetic three-formP = dF = d(dG + igG?% = igdG?, with dd = 0, whereF =
dG +igG? is a Yang-Mills (non-Abelian) field strength two-brm, G is a Yang-Mills vector
boson (e.g., gluon) one-form, and is the group charge strength. In particular,P =igdG? is
shown to naturally consist of exactly three fermiorconstituents, irrespective of the chosen

Yang-Mills group. The baryon chargeB, over the finite spatial expanse of a baryon, is

shown to be formed out of the volume integral oP, namely, gB=j”P :ijﬂgdGz. Pauli

exclusion among the three fermions withinB is then enforced by choosing the specific
Yang-Mills gauge group SU(3jcp. Quark and gluon confinement, and the mediation fo

nuclear interactions by short-range mesons, ariseda the application of Gauss’ law to a
baryon, via gB = [[[P=[[dG+i[[gG*. If one considers the same analysis in the conteat
string theory, one may also by exclusion arrive athe weak SU(2) phenomenology, and

other results of interest in accord with observed uclear and atomic structure, and

elementary fermion phenomenology including fermiorgeneration replication.
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1. Introduction
In this paper, we pose the question “why, thecadlff, do there exist in nature, naturally-
occurring sources, namely ‘baryons,” consistingeséctly three strongly-interacting fermion
constituents?” The two most-common types of bargbrcourse, are the proton and neutron.
We do know, because there are three quarks ([grpe@r baryon, to employ the Yang-

Mills color group SU(3j)cp with a Wavefunctiont,aT=(R G B) in the fundamental

representation, to ensure Fermi-Pauli-Dirac exolusiBut this does not explain why there are
three quarks per baryon, and not some differentb@umIf nature were to provide 4 or 7 or 11,
for example, then we would merely force exclusiathvU(4) or SU(7) or SU(11) instead, and
would still be asking “why?” with respect to thatferent number.

Maxwell's equations for magnetic charges may héemrin terms of a magnetic three-
form, asP =dF =ddA=0, whereF =dA is the field strength two-form arklthe potential one-
form with dd = 0 for any two successive exterior derivatives. Véendnstrate here that when

applied to a Yang-Mills fieldF =dG +igG?, whereG is a potential one-form arglis a group
charge strength, the now-non-zero magnetic three-f@ =dF =d(d(3+ing)=igdG2 turns

out to consist of exactly three fermions, no matkat the rank of the chosen Yang-Mills group.
SU(3)ep is then motivated simply by exclusion within thisree-fermion object, while the

baryon numberB is specified by the volume-integrated three-fogB :”‘J'P = |m' gdG?,
contrast Maxwell’s electric charge equatie@ = J'”* J= ”* F.

Then, applying Gauss’ law, we show how gluon auetfient is specified bﬂdG =0,

and quark confinement and the mediation of nudlgaractions by mesons which turn out to be
short-range, is specified b)gB:i”ng, where the surface integral is specified at the

confinement barrier. If one considers the samdyaisain the context of string theory, one may
also by exclusion arrive at the weak SU(2) phenartogyy, and other results all in accord with
observed nuclear and atomic structure and elemergarticle phenomenology, including

fermion generation replication.

2. Magnetic Sources in Yang-Mills Gauge Theory

It is well known, and can be found in virtually yaelementary textbook on particle
physics or quantum field theory e.g., [1], equat{@d.40), that the field strength tensor for a
Yang-Mills (non-Abelian) gauge theory is:

Fi MY — auGi V_ avGi H_ gf ijij/’GkV (2.1)

where theG* are the gauge bosons (classical potentials) otavkea Yang-Mills group one is
using (for instance, weak SU(2) or SU(3) QCDY¥ are the group structure constamnjss the

group charge strength, and the Latin internal symmiadex i = 1,23...N* -1 for SU(N) is
raised and lowered with the unit matrd. Multiplying (2.1) through by the group generator

T', and employing the group structufé T, = i [Tj,T"J, one can readily rewrite (2.1) as:



F =9G" -9"G* +ig|G*,G"|, (2.2)

where F# =T'F* and G* =T'G” are NxN matrices for SU(N). Multiplying through by
dx,dx,, and using the forms G=G"dx,, F=5F"dx, Odx, =F*dx,dx,,
G? =[G,G]=2|G*,G"|dx, Odx, =|G*,G" |dx,dx, , dG =0*G"dx, Ddx, = (6G" -8"G)dx,dx, ,

in well-known fashion, this further compacts tog$2], Chapter (4.5)):

F =dG +igG?. (2.3)

Starting with (2.2), let us now form the third-kaantisymmetric tensoP*" =T'P*"
for what is colloquially referred to as a “magneatiarge,” as such:

P =9°F» +9"F +3"F* =ig(0°|c*,G"|+a*|c",G7|+a"|G",G*|) 2.0
=igloccr.c*]+[c* 076" |+ [orc" G7]+ |6 04G7 |+ [ov G G4+ |67 aver)) T

Using the magnetic three-fori =5 P*“dx, Odx,, Odx, = P*"dx,dx dx, , as well as

dF =20°F*dx, Ddx, Odx, = (97F* +0“F* +3“F * Jdx, dx,dx, and also

dG? =£d°|G¥,G"|dx, Odx, Odx, =(9°|c*,G"|+a*|c",G7|+a*|c7,G*|jdx,dx,dx, ,

equation (2.4) can be multiplied through tby,dx dx, and then expressed in compacted form:

P =dF =d(dG +igG?)=igdG? =ig([dG, G] +[G,da]). (2.5)

Above, though we have employedtl =0, a residual, non-zero self-interaction teigdG?
remains that has it origin entirely in the non-Aaelcharacter of Yang-Mills theory.

Now, for a U(1) interaction such as electromagmetiwhich omits the non-linear term
G?, and becausdd = ,0ve of course hav® =dF = ,Gvhich is Maxwell’s magnetic equation
that in tensor form is often written &=0°F* +0“F" +3"F%. We often take this to state
that there are no magnetic charges and currenkg,etectric ones. Mathematically, we may
state thaf is a closed form in Abelian gauge theory, but iha¥ang-Mills theory,F is open,
and so, importantly, gives rise upon further ddfgiation to the non-zerd* in (2.4),
alternatively compactly represented by the non-geree-formP in (2.5).

Because we know of at least two interactions —kwesad strong — where Yang-Mills
gauge groups are in accord with observed physeadity, one should expect to come upon the
non-zero magnetic three-fornB=igdG? of (2.5) for both interactions. t’hooft & Polyak$3]
and others have previously pointed out that YantisMield theory seems to give rise to
magnetic monopoles, but to date, no connectiondeen made from this line of inquiry to
anything which has been experimentally observe8o, it behooves us to ask: “might these
magnetic three-forms (2.4), (2.5) represent angthire have ever observed in the physical
world?”

BecauseP is formed after taking two exterior derivativestbé gauge potentials, with



dd =0 dropping out butigdG* remaining,P is a “source” in the same sense as the current
density four-vector specified by Maxwell’s equatialt =9 ,F* =9 0“A"; 9, A" =0 for
“electric sources.” As we now show, the integrajeats gB = J'”P = ”de = ij‘”gdG2 , may

well represent the baryons which serve as the faumad of nuclear matter, whem® is the
baryon number charge.

3. Further Development of Yang-Mills Magnetic Souces

In this section, we shall perform some calculaigrhich will enable us to connect the
three-form P to baryons, especially on consideration of theultegy Feynman diagrams.

Starting with (2.4), first, let us work with thertes 0°G”. Here, we employ the quantum
mechanical operator equation:

9°G* =i|q”,G*|, (3.1)
see, for example, [4], just after equation (2.168\bstituting the above into (2.4) yields:
P =—g(lor.c e’ |+[6" .6 [+ |a 6"} 6° |+ [6" .67 [+ o .67 ) &+ 6 v 6¢]) (3:2)

If we expand the commutators in the above, termshefform G*q°G" -G*“q°G"” appear

throughout, so that all terms with” sandwiched between the tw@®” drop out. Then, re-
consolidating the commutators, (3.2) reduces to:

P =g(le* 6" a7 |+[c" .67} o]+ 67,67} o)) (3.3)
= g(+ |.G[#’ pVGﬂ]J+ |_G[V, pUG#]J+ I.G[J’ pﬂGv]D

Multiplying through bydx,dx,dx, , and usingG? = |G*,G" |dx dx, and P = P*dx_dx,dx, , see
above (2.3) and (2.5), as well gs= g“dx,,, the above compacts to:

P=3g|G% q|=3g|G% q°|dx, (= 9(2 q7fax, +|G? q*]dx, +|G2,q"|dx, ). (3.4)

The factor of 3 in the above is the first sign dfayon. It is important to note that this facbdr

3 does not at all depend on the specific choicéarfg-Mills group, that is, one does not need to
posit SU(3) for the factor of 3 to emerge naturally(3.4). In fact, it arises because Maxwell’s
magnetic equation the antisymmetric third-rank een8”" , in tensor form, has three additive

terms.

Now, let us work with the potential&” in (3.3). Absent a longitudinal degree of
freedom through some spontaneous symmetry breakauipanism, we take tH8” to represent
massless vector bosons, analogous to the phodn which mediates electromagnetic
interactions, and like the gluons which we believediate strong interactions between quarks.
In QED, one typically starts with Maxwell's equatiofor the electromagnetic current



J#=0,0"A" in covariant gauged A“ =0 with A” = g™ and thereby establishes the
relation A” :—(lqu)J” between theA” and J*, where q° =q°q, is the squared photon
momentum. Thel* in turn relates to a given fermion wavefunctign for example, the
electron or a quark, according & =4ZQy“(// whereQ is the U(1) electric charge generator and
y* are the Dirac matrices. It is also well-knowattfor massive rather than massless bosons,
the term1/g° migrates tol/( Z-M 2), where M is the vector boson mass. And, there are

known methods for dealing with poles 1hg® or 1/( Z-M 2) (or other terms in propagators),
for example, thetie prescription which also bears a known relatiobdeon widths / lifetimes.

With this QED point of reference, let us analodpuslate theG*, which we are taking
to be massless, to their associated Yang-Millseruird# , using the relationship:

=T (‘/’(u)TiVﬂw(u))- (3.5)

Au) Ay

GH = -

Here,G*=T'G*, J*=T'3*, 3* :‘zmTiV”‘//m' and the ,, on the squared boson momentum
q(m2 :q(m”qmg and the fermion wavefunctiog/,, is a label, not an index, for later use,

denoting the spacetime index of the bo§&h and current]” with which it is associated. For a
gauge group SU(N), theg,, containsN Dirac spinors in the fundamental group represemtat

We then return to (3.3), which, using the firsbtterms in (3.5), we may rewrite as:

ol ol ]} (3.6)

ot it
0 )

Using J2 =%[J”,J”]dxﬂ Odx, = [J”,Jv]dxﬂdxv =[J,3] andq=g“dx,,, (3.6) compacts to:

P:g(qw) +q(/1) +q(v) J[J q- (3.7)
A q(u) q(a)

Contrast (3.4) where a factor 3 arose, to the ati®ythagorean” sum of three square momenta.
Then, inserting)* =T' w(m'l'iy"w(m):t//(mTi'I'iy"w(m from (3.5) into (3.6), yields:



1 m i y i v o
5 W T TV W ¥ TTY t//(,,)],q ]
U Yy
auv 1 [ i v I i o
P a =g +T_‘/j(v)TTiy l//(v)!l//(a)T le l//(a)]aq#] ’ (38)
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Finally, we add one more set of labels to (3.Baking, as an example, the top line of the
above, let us work from right to left, and regane tight-most fermiorny,, to be in state “1,”

the middle fermions‘z(v) and ¢, to be in state “2,” and the left-most fermid_x]m to be in

state “3.” We do the same for the other two liagsswell. Thus, we now refer to the three
distincty,,, ¢, andy,,, as the ", v”, and “o” fermion wavefunctions, and to each such

wavefunction being in state “1,” “2,” or “3.” Thudor example,y,, designates the /"
fermion in state “2.” With this labeling, (3.8) wdbecomes:

1 T i y i v o
5 W T TV Wy ¥ T TV w(vl)]’q ]
U Yy
auv 1 [ i v I i o
P =g t———— W T TV Wuoy ¥ (5T TV l//(al)]’q”] . (3.9)
Auvy Yo
2 o, 0T TV W b o]
— W T TV Wy ¥ 4T TV Wy} 0
Yoy Yy

Now, we are ready to make the connection to bayon
4. The Theoretical Formulation of Baryons

We proceed to draw a Feynman diagram from (3l8@}ktiated in Figure 1 below, using
the following rules:

1) For the ternﬂz,z(ﬂs)TiTi y”z//(ﬂz),Z(VZ)T‘TiyV(//(Vl)J,q”J in the top line of the above, we draw this
as a fermion-fermion interaction between the cUrr&yvz)Ti'l'iy”w(vl) and the current

E(NS)T‘Tiy“(//(ﬂz) mediated by the vector bos@f with momentumg’. We do the same for the

other two terms of (3.9), thus producing threeidcstFeynman diagrams for fermion-fermion
interactions mediated by vector bosons.

2) Very importantly, we then interconnect all Bnigom all three terms. In particular, we make
sure that each op, .\, ¥, andy . , representing different states of the same ferngigp,

all reside on the same fermion line. Similarly fof, and¢,,, in each of states 1, 2, and 3.



By following this rule, we find thafy” naturally ends up on the opposite side of therdiag
from ¢, and similarly forq” from ¢,y andq” from ¢,.

3) We regard the presence of commutators througl38) as indicating that directional lines
on the Feynman diagrams can be drawn in eithectdrerelative to a given line. Thus, e.g.,

from (3.6), in the temﬂJ”,J“J,q”Jz[J",J”Jq” —q”[J”,J”J, we take[J”,J“Jq” to indicate a
directional arrow showing)’ propagation fromJ” to J*, we take- q”[J” ,J”J to show reverse
propagation ofg” from J* to J”, and we take the overa{[U”,J”J, q”J to thereby indicate non-
specificity of direction ofq”. Similarly, we takeJ#J" in [J“,J”Jz J#J" =JVJ*, to represent
one set of directional arrows for the associatedhitens ¢, and ¢,), we take-J"J* to
represent reversed arrows, and we take the ov{ajé(LIJ”] to indicate non-specificity of
direction of propagation for the fermiogs,,, ¢,).

4) We placeT'T, y* at the vertex between all of tiye , and tZ(m, we placeT'T y* between all
of they,,, andy,,,, and we placd 'T,y” between all of they,, andy/,.

5) We draw a dashed line between state “3” an $id, to represent an iterative “recycling”
between state 3 and state 1. One may think ofahleing in the nature of a “finite state
machine” which iteratively cycles from states»12 > 3/1-> 2> 3/1-> 2 > 3, or the reverse,
depending on how one chooses directional arrowe thase are added (note rule 3).

6) Using the diagram resulting from rules 1-5,wesv remove the vector boson lines, and draw
an equivalent second diagram showing only the f@nsniin the form of three interconnected,
three-node, four-branch Mandelstam diagrams.

7) To establish the s, t, u scattering channettisf‘three-node” Mandelstam diagram, we now
draw both diagrams with directional lines, whertia lines on the fermions point forward from
state 1 to state 2 to state 3 and then back agastate 1. As between any two fermions with
their interaction mediated by a vector boson, timeans that the Fermion lines will be
automatically reversed relatively to one anoth&hus for example, in the commentator term

[(t,z(#g)Ti'l'i VU o ),(l?/(vz)TiTi Vo )J,q” of (3.9), if we take the right hand temgn, ,, T'T, y* i ..,
to represent “forward” propagation of tge,, fermion, then the left-hand ter:;Tn(ﬂs)Ti'l'i VU o)
will automatically represent “backward” propagatiohthe ¢, fermion. This will be a very

important feature, when we shortly examine how mesarise. We label each node of the
associated three-node Mandelstam diagram as ‘&&lly establishing this choice of directional

lines as the s-channel for all three nodes. Therathannels t, u can then be arrived at in the
usual manner, as can other diagrams from “crossiagbus lines.

The resulting diagrams, representing equation,(are@ below:



Figure 1

We now find that the Yang-Mills magnetic sour€"’ in (3.9) inherently contains
exactly three fermion constituents, importantlyespective of the rank N>1 of the Yang-Mills
gauge group. Nowhere in this derivation have teng time had to assume that we were using
SU(3). Might such a naturally-occurring, threenfi@n source, be related to a baryon?

Having established a three fermion source, novg letoceed to make this “strong.”
Here, we turn to Fermi-Dirac statistics, and patady, to the Pauli Exclusion Principle which
will play a central role throughout the remainingvdlopment. Given the natural emergence of
three fermions in Figure 1, and if we require thath of the three fermions iB*"’ possess a
distinct quantum number for the purpose of satimgfyiFermi-Dirac statistics / Pauli exclusion,
then we are compelled to choose the group SU(8gterate exclusion. So, now, we formally
choose SU(3) as our Yang-Mills gauge group, ancsggn all of the wavefunctiong in the

above to the fundamental “color” representatiorBof3), ¢ = (R G B), and choose as the
group generators, the familiar 3x3 matri@is=%/]i. We also assigm = g,, the strong charge
strength. Note, however, that we do not assigoromh a one-to-one correspondence with the
spacetime index. Rather, we assign,” =(R,, G, Bu) %w =R, Gu Bu)

(//(U)T = (R(U) G B(J)) so that each of the three fermions can assumesti@us color states

with the overall set of interactions in Figure The net result is a “colorless” baryon, as we shall
see in the next section when we examine quark rmhgonfinement.

In establishing SU(3kp in this way, we make an extremely useful pedagudgic
connection between spacetime and internal symmesig Pauli exclusion as a “bridge.”
Specifically, Maxwell's magnetic equation, coupledth Yang-Mills gauge theory, leads
inexorably to objects consisting of exactly threenfions, as shown in Figure 1. Each of the
fermions ¢ ,, ¢, and ¢, , is associated with one of three spacetime indésaa their

currentsJ#, J", J9, respectively. Then, having three fermions, weosle SU(3) to enforce
exclusion, and so come upon QCD in a very natuegl, with the internal symmetry of strong
interactions, SU(3)p, emerging uniquely from the spacetime propertfe®d”, via exclusion.

It bears emphasis again, that we arrived at Fifjuselely by examining the spacetime properties
of P#?, without ever resorting to any assumption abowtgarticular Yang-Mills gauge group,
and then used exclusion as the bridge to choos8)SWe shall return to this bridge in section 6



and thereatfter, as it will point the way toward weéatrong unification, lepto-quark unification,
and the structure of both atomic nuclei and atoms.

Now, we note that the magnetic ten$dt”, like, for example, a current vectdr’, is a
density, locally defined. To describe a “whole ryman, we will want to integrate th&*"
density over a suitable spatial volume which wevkrfoom experiment is on the order of 1

Fermf. The fact thatP““ is already, naturally, antisymmetric and of thiedhk, is perfect to
establish a three form for the necessary volumegmation, and directly lends credence to the

fact that P**“ represents a baryon, which is best understood nefdrence to integration over a
finite, three-dimensional volume, just what one Woexpect. Thus, referring to (2.5), (3.4), and

(3.7), we now integrate the baryon source denBit§/ over the 3-formP = P*"dx,dx,dx, , to

establish the formal, covariant expression for ale/tbaryon, including the quantized baryon
number charg8 =1, 2, 3, . . . multiplied by the external chasgiengthg,, as follows:

o e[ - [jdec o) o -l
o o o 88025 ol

2 2 2 2 2
U 9w Yo Y vy Yo

(4.2)

The final term, employing)? :%[EC,ECJ, is based on forming the specific SW@) currents
J =T 3" =¢T'T y*y , according to:
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where CC above compactly represents the illustraBedB color matrix, and where, for a Dirac
spinor in color stateR, we define the one-forniRR = Ry“Rdx ,, and similarly for other colors.

Because{EC,EC] is a 3x3 matrix product of two 3x3 currents (41Be baryon (4.2) is, formally
speaking, also a 3x3 matrix, transforming underSb¢3),cp as [_Ki?BJ :

2 2 2
Y%y "9 * %)
2 2 2
A Y Yoy
its origin in thel/q(m2 of (3.5), and thaJL/q(m2 is ordinarily part of a propagator term. Thus, it

may be worth further investigation to ascertaithi§ scalar term in (3.7) is somehow connected
to the propagator for a baryon, and may in some asg be helpful in understanding baryon,
e.g., proton and neutron, rest masses.

It must be stated that so far, we have only dbedria baryon in terms of its SU{3p
properties, but that this is not yet a real obsgivaryon, say, a proton or a neutron, because we
have not yet addressed the question of from whére&U(2)y weak isospin quantum number

| ® originates. The emergence of SW¢2)a exclusion, will be the subject of section 6.

It is also noteworthy that the scalar (numberbntegs( j in (4.2), has



Most importantly, for the moment, these three fema are all naturally bound together
in a single, integrated source, emanating from Maksv magnetic equations, and so the
guestion “why are quarks confined?” has the simphglicit answer that they are merely the
individual constituents of the naturally-occurringseparable, three-fermion system specified in
(4.2). Let us now explore further, what the foregomay explicitly teach us about quark and
gluon confinement, as well as what we can learruatiee only entities which are not confined,
namely, the short-range, short-lifetime mesons twhbiad together the atomic nucleus.

5. Quark and Gluon Confinement, Mesons, and ShoifRange Nuclear Interactions

The goal of this section, based on the above dpwent of a baryon, is to achieve
confinement in a manner analogous to the so-caNdd Bag Model” [5], [6] by paying close
attention to what does and does not flow acrossdhéinement surface of a baryon, but without
an ad-hoc backpressure, and in a way that explalirysthe nuclear interaction is mediated by
mesons. Many others have also made various etfoaslve the confinement problem, e.g., [7],
[8], [9], [10], [11], [12], [13], [14], [15]. Namdb first realized that colored magnetic monopoles,
if placed in a QCD vacuum with superconducting prtips, would form flux tubes due to
Meissner effect, which could help to explain coafirent. [16]

To approach confinement, we take Maxwell’s equegtias our point of reference. Using
differential forms, these are of course given*by=d* F =d* dA and P =dF =ddA= 0 with
F =dA. To write these equations in integral form, we @auss’ law for a given p-fori,

namely IdH = IH, where d is the dimensionality of the closed surface ovdricl the
d d-1
integration takes place. Thus, Maxwell’s integrquations may be, and often are, written as:

Q= ([J3=[Jfa-F = [Jo-cr=[JF = an o
o=mP =”dF =”ddA =ij =jdA. (5.2)

In (5.1), Q is the total electric charge containedhin the three-dimensional volume of
integration, e is the running charge strength, aﬁf* F is the total (net) electric field flux

through the closed two-dimensional surface of titegration volume. H* F is equal toQ,

which, of course, is quantized. In (5.2), becaoteddA=0, the total “magnetic charge”
contained within the three-dimensional volume igozand the net magnetic field flux through
the closed two-dimensional surface of that voluim@)so equal to zero.

Baryons, insofar as they are understood at this,tpresent a “hybrid” of features from

both equations (5.1) and (5.2). They are simitar5.1), eQ =I”*J, insofar as the total
baryon chargeB contained within the baryon volume is non-zero guéntized. They are
similar to (5.2),HF = J'J' dA= Q however, because despite a non-zero charge withibaryon

volume, there are no gluons flowing across the damnof the baryon volume. Itis as if there is
an electric charge inside the surface of integmatiget one can nevertheless shut down the
electric field and the flow of photons through tisatrface. Further there are no currents of



individual quarks flowing across the boundary. Wtaes flow across the boundary, however,
are color-neutral mesons with extremely short raamggshort lifetime, consisting of quark / anti-
guark pairs, which bind nucleons together to fotamac nuclei.

Now, to show confinement, and a nexus to stronglear interactions, one would need
to establish five points, i.e., “legs of confinertierl) a non-zero baryon charge occupying the
volume within the confinement boundary; 2) no glsidlowing across the boundary; 3) mesons,
i.e., quark / antiquark pairs, which do flow acrdese boundary; 4) a very short range and
lifetime for these mesons, i.e., mesons which a wnstable; and 5) no individual quarks
flowing across the boundary. We shall addres<setiresequence.

To start, let us apply Gauss’ law to see what)(#eadches us about what does and does
not flow through the confinement boundary of a bary In particular, we write a set of integral
equations similar to (5.1) and (5.2), and we regéuel integration surface to be the outer
confinement surface of the baryon, that is, the ethri barrier within which gluons and quarks,
i.e., color charges, are thought to be confineg.(Gauss, and witlldG =0, we write (4.2) as:

9.8 =[[[P=[[[dF = [[[dldG+ig.G?)=i[[[ 0,06 = [[F = [[dG +i[[ 9.57. (5.3)

Now, in (5.3),B is a scalar quantity which represents the baryonbrer of the baryon, similar in
nature to electric charg®. In generalB=1,2,3... is quantized, similarly tQ. Equation (5.3)
says that we do have a non-zero baryon chargeeiris@ confinement surface. That is “leg 1.”
For the moment, we consider a single baryss«i,.

Now, we examine the sub-equatioff[g,dG* = [[dG+i[[g,G* in the above, where

we purposely separate the surface integral into tevans. By Gaussm'dG2 :J'J'Gz, we
deduce:

”dG =0. (5.4)

This is very similar to Maxwell’'s magnetic equatioHdA=0 from (5.2), this may be

interpreted to state that there is no colored fiklg, i.e., no gluon flux, across the confinement
surface. This is the second leg of confinemeningd?).
With (5.4) above, (5.3) reduces to:

9.B=i[[9G", (5.5)

which yields the remaining three legs of confinetmand which we shall now explore in detail.
First, expanding withG* = [GV,G”]dedxﬂ, we again use (3.5) to write:

v 1 v _ 1 . i v y i
6", = [0, = W T TV W i T TV W (5.6)
w) Y Auy Y

where we have switched thg,v indexes to [G”,G“J:—[G”,G”J to facilitate momentary
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comparison to Figure 1, and where we have alsodoted the same “1,” “2,” “3” states as
previously. Contrasting, we see that (5.6) is \&@nyilar to each of the three main terms in (3.6)
and (3.9). The differences to note, however, laaé (5.6) only contains one such term, not three,

and that the term is onILx]”,J”], not [[JV,J”J,q”J, i.e., there is no commutation relationship
with a gluon momentung?’ .

Now, let see if we can draw a Feynman diagrantHerlast term in (5.6), similarly to
how we drew Figure 1 earlier. It is helpful to quere (5.6) to the first term in each of (3.6) and
(3.9), for the interaction between tige , and¢,,, fermions. It is also helpful to compare the

above-noted equations to the lower-left Mandelstamde in Figure 1, because that node
illustrates this interaction between thegg, andy,,, fermions.

First, in Figure 2 below, we isolate from Figureohly that portion of Figure 1 which
represents thig/ ,, ,,, interaction. Second, because there is no comiontetlationship with

a gluon momentung’ in (5.6), we place an “X” over the gluon line, aatso, inside the
Mandelstam node in place of the “s.” Then, we $yntigke the Mandelstam part of the diagram,
and draw they,, andy,,, lines parallel to one another. Finally, noting tielative orientation

of the arrows as extracted from Figure 1, we ressée lines fory,,, , and then represent this as

the anti-fermionzﬁ(v). We end up, at the lower right of Figure 2, watljuark / anti-quark pair

which looks just like how one might draw a mesollesons are known to mediate nuclear
interactions, they are known to be very unstabléh whort range and lifetime, and they are
known from numerous experiments to be the only tgpeparticle which can penetrate a

confinement surface. Multiplying (5.6) through q%zq(mz, this is all illustrated below.

q(v)zq(,u)2 [Ger#]= []Va']'u]= [‘/7<v3)Tl7:7V‘/’(v2)=;’(yz)TlZ7#‘V<u1)]

l//(vg) W(VZ)

Wi SIS
= W) Yia)

P _ _

> Yis) (v2)

o) Vi) =
W) W) i)

Figure 2

Reviewing Figure 2, is appears that the non-liteam G2 :[GV,G”]dxvdxﬂ, which is at the
center of Yang-Mills gauge theory, in some manmgresents a meson. We see too, that in
[J”,J“J, the right-side currend” represents the quark current of the meson, andethiside

currentJ” represents the antiquark current of the meson.us.@ow formalize this connection.
Going back to (5.5), the expressngB=i”gs[G”,G“]dxvdx# tells us thaﬁgS[G”,G”J

is what flows through the confinement barrier.igﬂG“,G”J IS representative of a meson, then
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B:iH gS[G”,G”]dedxﬂ is a simple declarative statement that “mesonw flbrough the

confinement surface,” which is the fourth leg ohfinement. Pursuing this possibility, let us
now define a second rank, antisymmetric, “mesotaetagnetic” field tensor:

M =19 [y 3u]=ig fe",64]. (5.7)
o) Yy

We may then use the above to rewrite (5.5), with- M *dx, dx , = ig.G?, as:

|”g G?= |” |”gS[G” G”]dx dx,, -|” [J J”]dx dx,,

(v) Uiy . (5.8)

= HM *dlx, dx,, = ”M

Now, we focus ongSB=”M , Which is identical in form to Maxwell's equatidb.1),
eQ:H*F. Very importantly, however, in the abovey =ig.G*, while in contrast, for
Maxwell's equation (5.1), F =dA. If we define M, according to T'M," =M* for the
T'=1) of SU(Bhco, we may then couch this contrast with Maxwell's1j5even more
pointedly by defining the components b, as:

0 -E, -E, -E
e E, 0 -B, B, (5.9)

E, B, 0 -B,

E, -B, B 0 )

With gsB:”M and (5.9), we may then think of the strong intBosxc between

baryons, classically, being mediated by a mesarel@agnetic field, wher& is the “meso-
electric” and theB is the “meso-magnetic” field. We may then follévaraday by drawing a
baryon with field lines emanating therefrom, prebjidike for an electric charge, right down to
the meso-magnetic fiel@ arising from relative motion between baryons. Wiite first-rank

dual * P# = 1P, of a baryon (seeHfror! Bookmark not defined.], equation (3.51)), one
may even think about a classical Lorentz-force @palf the formdp” /dr =MV, * P#, where
p' =T'p” is a Yang-Mills, 3x3 momentum vector for a bargtnsity P, under the influence

of a meso-electromagnetic fiels”,. However — and this becomes a critical point tfe
electromagnetic interactior; =dA, and this is an inverse-square, long-range intierac For
the nuclear interaction, in contrastj =ig.G*, and this is a short range interaction. Thidés t

only difference betweergsB=”M and eQ =”* F. If the nuclear interaction is to be short
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range, then this short range must arise from thetfat M =ig.G> for nuclear interactions, in
contrast to the fact thd = dA for electromagnetic interactions. How might tbezur?
Now, focus on the other interesting differencenssn the[J”,J”J -only term in (5.6),

(5.8) and Figure 2, and ttﬂf:]”,J”J,q”J terms in (3.6), (3.9) and Figure 1. The absafany

commutation withq” means that in contrast to Figure 1, there is norgmediating between the
qguark-antiquark pair in Figure 2. That is repreedrby the “Xs” in Figure 2. The absence of a
commuting q° suggests that the meson will be a highly-unstphbieicle, because there is no

vector boson mediator to permanently bind togetierquark and antiquark. This is but a short-
lived association, because if a quark and antiquask to “jet” out of the baryon together, they
may do so, but they leave behind any gluons whiaghtrbind them together. Since a meson

field M* ~ [J”,J”J only is emitted and absorbed by a baryon in ¢ fof [J”,J”J currents,

i.e., quark / anti-quark pairs, since there areveotor boson mediators binding the meson
together (we leave open the prospect of scalarrbosediators which may provide a mass

mechanism), and since the very existence ofNH€ depends on the unboud\ﬁiV,J”J currents
remaining together, the meson will decay after ry gbort time. For example, if the meson is a
V2m° = qu+dd meson, it may decay into the vacuum via an elaghositron pair and gamma
ray with a half-life of about I8 seconds. Or, it may after its brief run be absdrback into a
baryon, be it the original baryon, or a nearby bary In any event, whiley.B :”M bears a

clear resemblance to Maxwell’'s charge equaeQn= ”* F insofar as how one would envision

the meso-electromagnetic Faraday-type field lingsosinding a baryon, the unstable, unbound
M =ig,G?, in contrast to the stablE = dA, causes the strong interaction to have extremg sho
range in contrast to the unlimited range of elgoignetism. F =dA originates in a single
vector particle. M =ig.G* depends on an association of two fermions whioreh# vector
bosons binding them together. The electromagneteraction is mediated by vector boons
(photons) and is long-range and stable. The nugiéeraction is mediated by mesons which are
highly unstable, and therefore, will live over omyery short range and lifetime. These are the
third and fourth legs of confinement.

Finally we then ask, what about individual quarks€an they flow across the

confinement barrier also? Equation (5.8), spedlific gSB=i”%J2, says “no, they
%) Y

cannot.” While currents of quark3” can and do flow through the confinement barribeyt

never do so alone, but only in pairs with an argtigucurrent JV, in the J2=[J“,J”J

configuration which underlies the mesons. No i@l gluonsG*. No individual currents
J#. Only mesons- [J”,J”J can be emitted or absorbed through the barriarlidryon. This is

the fifth and final leg of confinement.

It is also to be observed, that the confinemenndividual quarks, in favor of mesons
being allowed to penetrate the baryon surfacenfisreed by the very structure of the differential
forms spacetime geometry. If we are talking abitmw across the confinement surface, we are
talking about flow through area elementg,dx,. This needs to be contracted with a second

rank antisymmetric tensor, such as the field stterignsor F* in Maxwell’'s equations, see
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(5.2), or the meson fielth " of (5.7), (5.9). Single-fermion currents aretfios third rank-only,
not second rank, see, e.g., (5.1) where we empleytrrent three-formi 3% =3, The

best we can do, is contract the first-rank curredts J# with dx,dx, in [J”,J”J quark /

antiquark meson pairs. In this way, the existenEemesons as the mediators of strong
interactions, and the confinement of quark currentsh that they cannot cross the barrier unless
accompanied by anti-quark currents, spring diredtym the structure of the differential
geometry. Confinement of quarks, and passage ebns is geometrically-mandated.

We may now proceed to encapsulate all of the albteevery compact form, bearing a
close resemblance with Maxwell’s integral equati@g), (5.2), but with the crucial differences

developed above. Because the baryon three-forgivés by P =ig.dG?, equation (2.5), and

the meson two-form is given byl =ig.G?, see (5.8), we may now relate baryons directly to

mesons in differential form, by way of the very etit, simple equation (contrast
*J=d*F =d*dA):

P=dM =ig,dG” . (5.10)

In integral form, using Gauss’ law, this becomes:

9.8=[[[P=[[M =i[[9,67 =i[[ 32— J? versumQ = [[[*J = [[*F = [[*dA(5.11)

2 2
vy Y

Reproducing (5.4), and applying Gauss’ law alonth2.3) asdG = F —igG” and B :i” gG?
from above, one also has:

mddG=UdG=”(F‘igst):UF‘gsB:O versug([ddA=[[dA=[[F = . 0(5.12)

Although M =ig.G* and F =dG +ig.,G” so thatF =M +dG, the combination ofy.B :HM
from (5.11) andg B = ” F from (5.12) tells us, across the baryon surfata; t

JIF=]m. (5.13)

From outside the baryon, the meso-electromagnietit $trengthM is indistinguishable from the
field strengthF becauseﬂdG = 0 We can describe this in terms of a new, localggavector
symmetry, as follows: If we writé =M +dG as F* =M* +9“G*, then (5.11) and (5.12)
are invariant under the local gauge transformafidfi -~ F*'=F* -9"G*' =M*. Contrast
this to both A* - A“'= A¥ +3“A\ and the gravitationag*’ — g*’'=g* +d“A”. In form

language: the nuclear interaction (outside thedmayis invariant undeF -~ F'=F -dG=M .
Because of this, we can then transform to a gaugdich:

F=M. (5.14)
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and thus identify the field strength directly with the meso-electromagnebt of (5.9). This
invariance of the nuclear (baryon) interaction unéfe— F'=F -dG =M , is another way of
stating that nuclear interactions are colorless.

All of the essential features of confinement andlear interactions are encapsulated in

(5.11) and (5.12) above.gSB:I”P is leg 1 of confinement — non-zero charge withie t
baryon. ”dG =0 is leg 2 — no gluon flux through the baryon suefag B =”M contains leg

3 — meson flux does occurg B = i”%\lz contains legs 4 and 5 — the mesons are short
Aw) Y

range because there are no mediating vector bosmasng their individual currents, and

individual quark flux does not occur because quamily flow in colorless quark / antiquark

current pairsJ?. Like Maxwell’s equations for electromagnetisfd,1(l) and (5.12), at bottom,
are the underlying equations of nuclear physics.

While the development here has discussed fivéndistiegs” of confinement, a different,
but parallel formulation of this problem was poditey Jaffe and Witten for the so-called “mass-
gap” problem. They state that “for QCD to desctifbe strong force successfully, it must have at
the quantum level the following three properties;heof which is dramatically different from the
behavior of the classical theory: (1) It must havémass gap;’ . . . (2) It must have ‘quark
confinement,” . . . (3) It must have ‘chiral symimyebreaking,” . . .” They continue: “The first
point is necessary to explain why the nuclear fascstrong but shortranged; the second is
needed to explain why we never see individual ggjaatkd the third is needed to account for the
“current algebra” theory of soft pions that was eleped in the 1960s.” [17]

“Strong but shortranged” is leg 4. “Why we negee individual quarks” or gluons are
legs 2 and 5. The “theory of soft pions,” more grafly, the existence of mesons as the
mediators of strong interactions, is leg 3. Nacsfically mentioned, but certainly implied, is
leg 1: the baryon charge enclosed with the baryofase is non-zero.

Before concluding, we make a very preliminary mston into propagators and masses,
leaving further detailed exploration for a sepanaéper. Contrasting (5.7) with (3.5), it now

appears as if the meson propagators may be rettateel'z%iz, which may in turn may relate

%) Y
to individual quark masses since there is a sguam@entum label for each quark current. Then,
2 2 2
+ + 1 1 1 :
the term g{q(”) 2%)2 q2<v) J:g{+ 5 +t—5—+t——— |, that is, the sum of
Qe Yy Yo Ao 9 v Yo Yo Y

three prospective meson propagators, appears dterw the baryon propagators, because it
multiples the underlying baryon structutﬂzz,qj of Figure 1, contrast with (3.7). On careful,

further consideration, these may allow a bettereustdnding of the mass relationships among
baryons, mesons, and quarks.

6. Protons, Neutrons, Deuterons and Dibaryons, and/eak / Strong Unification
In briefly talking about specific quarks suchwasndd and specific mesons in the last

section, we were really a bit ahead of ourselves;abse we have thus far only justified
SU(3)xcp. To talk about specific, observed quarks and m&sand even about, e.g., protons and
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neutrons, we must also motivate SW(2yeak isospin. That is the subject of this section

We have shown how Figures 1 and 2 represent bargnd mesons. We have shown
how, after assigningg” =(R G B) andT' =11 to satisfy exclusion, we can use Figures 1
and 2 and their related equations to describettbaginteractions of quarks within baryons and
even confinement and the short range QCD propestiesesons. But, we cannot, yet, talk about
observed baryons or mesons. We can only talk alheut QCD properties. Thus, to the next
guestion: “How do we go from here, to describing tibserved baryons and mesons, say, at least
the proton and the neutron to start?”

This brings us to the doorstep of weak / strongfiaation, because that which
distinguishes, e.g., a proton from a neutron @r*afrom a 77° has nothing to do with color, and
everything to do with SU(g) weak isospin, particularly, the third generatdr= +2 of SUQ2)w.

Also of interest is the electric charg@=Y +1°, however, this is not necessary for defining
exclusive states within a baryon, or for distingping mesons, because all quarks have the same
Y =1 and sol® will distinguish one baryon or meson from the nagtsurely as wilQ. In the
proton, p=uud, two of the quarks have isospin ag, the third has isospin down. In the neutron,
n=udd, two of the quarks have isospin down, andthimel has isospin up. The widespread,
naturally-occurring deuteron = pn, which forms thecleus of deuterium and is the most-
common dibaryon, and from which the nuclei of momnplex, non-isotopic atoms may be
built, contains a total of six quarks. If we u$el to represent isospin up and down,
respectively, the deuteron = pn may be thoughtotatain the six mutually-exclusive fermion
states,pn:(Rﬂ,Gﬂ, BU), (RU,G U, Bﬂ), for example. Finally, and the main point of all
this, is that SU(3)cp alone cannot by itself get us from the baryon iguFe 1 to real protons
and neutrons. We need, at the very least, theuptogroup SU(3cp X SU(2)v (which the
above discussion of the deuteron roughly represeatsl even more preferably, we need to

understand what unifies the weak and strong intierss
This returns us to the Pauli Exclusion Principleln Section 4, the spacetime

configuration of a baryon yielded the three disticemponent fermionsy,,, ¢,, and¢,, in

Figure 1. To enforce fermion exclusion, we werd te assign the internal symmetry of
SU@Bken, via @™ =(R G B) and T' =14, to each of these three fermions. This use of
exclusion as a bridge between spacetime and inteynmanetry has important pedagogical value
for approaching other internal symmetries as webr example: If we have been able to arrive
naturally at three-fermion objects via Maxwell’suatjon P =igdG* for Yang-Mills magnetic
sources and then at SU¢3) solely through the bridge of exclusion, is thevene way to arrive

at SU(2)y of weak isospin, also, solely through exclusiddtated most simply: “can we uncover
some situation which compels us to introduce SW(B) satisfy exclusion, as we did with
SU(3xcp?” And, since SU(3)cp arose via exclusion, from the spacetime propedidsryons,
we also ask “is there a spacetime property of bayehich similarly compels SU@?” The
motivation here, is that SU)not be introducead hoc, but that it be motivated and, indeed,
required, to enforce some necessary exclusionipteyaooted in spacetime itself.

The spacetime origin of SU@)p above, in the end, can be summarized entirely from
“counting” arguments, based on the third rank gmiwmetric P*" containing exactly three first
rank vector boson&”, G", G?, see (3.3), and three first rank curredts, J", J7, see (3.6),
with three spacetime indexes, from which we obthiexeactly three fermiong ,,, ¢, , ¢, in
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need of exclusion. Thus, we ask: “is there a sinabunting argument which can be gleaned for
SU2)w?”

Surprisingly, SU(3) appears to arise most naturally if we consider \they basic
features of a string theory. Consider, for examplelosed string tracing out a world sheet
X*#(r,0) in spacetime. The curredt” (x® associated with this string, see, e.g., [2], B2,2
223, is:

d X* 8.X
a,X* a,Xx"

g

3 (x) = | dzdade( Jd(“) X7 =X (1.0)| 200 o, 0" (6.1)

where 6 is the Dirac delta in four-dimensional spacetiaveg whereg”” :lzly”y” - y“y”J is
used in recognition that this second-rank, curi@fit is antisymmetric and so would need to be
composed out of antisymmetric combinations of th@a®)y*. Similarly to how we proceeded
earlier, we label the fermions with the (in thisseapair of) spacetime indexeg, of the

associated current. Most importantly — and in thetonly point that matters for the exposition
to follow — in such a string theory employing the2Zleterminant in (6.1), “one” is added to the
rank of every spacetime object in the associatéidyanmetric field theory. The gauge potential
G = G", the field strength tensoF*" = F*“, and the magnetic charge (baryon)
P = P all totally antisymmetric. Now, using these “plane rank” objects, let's count
some more.

The “string baryon”P?"" would be rank four. The “string currentd*” would be rank
two. Out of the four spacetime indexes in thengtbaryon, one can the form 6 = C (4,2)
combinations, o, ov, or, uv, ur,vr . That is, one can “populate” a “string baryon”thwi
exactly six “string currents” for six fermions. 0% a “string baryon” so-defined will contain a
total of six fermions, ¢ ., W) & oty Wiy ¥iury Yiry» 1abElED in these same index-pair

combinations. For exclusion of the fermions intsacsix-component baryon, one would choose
SU(6), and so there would be six different “coloo$’fermion. However, the “string” nature of
these fermions would only be apparent over veryllsthigtances, possibly within a few orders of
magnitude of the Planck scale. For everyday olasenv, this SU(6) symmetry will break down
into the SU(3) of QCD based on 3 = C (3,1) spacetimlex combinations developed above in
Section 4, but, with a two-fold degeneracy. Thiofold degeneracy has two important
consequences:

First, rather than go from three to six “color&/ may instead maintain the three colors
we already have, and label this two-fold degenemey SU(3ycp by two states, sayf, |, and
call this new symmetry SU(g) That is, SU(6) will break down to SUGzb x SU(2)y when
going from high to low energies, yielding the pseciyang-Mills internal symmetries observed
in nature (deferring, until Section 8, discussidiweak parity violation). Now, SU(R) has its
foundation in exclusion, based on the need to pmwxclusion for all six fermions iRP%"".
This exclusion, also, originates in the spacetimgperties of the baryons and the currents which
populate them.

Second, the remnants of this degeneracy will apipethe tendency of the six different
fermions states of SU(6), namely, tfﬁeﬂ, M BMRU,GU,B U) combinations, to cluster into

two baryons of three fermions each, at low enerdyhen the clustering separates out into
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(RM G BU)(RU,GU,BN), one ends up with a deuteron. This too, pregiaetords with

what is observed in nature, and would explain whiy-isotopic nuclei, built up out of deuterons,
e.g., nucleon pairs, are very predominant in nature this light, the fourth rank Yang-Mills

magnetic objectP®"" is best thought of, not as a “string baryon,” bather, as a dibaryon
Pt of which the deuteron is the most common specése. At low energies, the six
exclusive states ofR menBMRY,GU,B U), split into various combinations of two three-

fermion baryons each. Non-isotopic nuclei are theift up out of a plurality ofP*"*, but at
low energies, are witnessed predominantly as ddvey e.g., deuterons consisting of two
baryonsP#" (see, e.g., [18], [19], [20] which consider sixagki bags and dibaryons.) In this
way, the existence of deuterons = pn = 3 quarksbargons throughout the nuclear world, as
well as other dibaryons, is also seen to directlyran the low energy Yang-Mills
phenomenology SU(3p X SU(2)y. All of this, may provide a unified basis for@tg and
weak interactions.

If we use= to designate the high-to-low energy transitiomfr®*"* to P*", and J**

to J¥, together with the associated internal symmettiesh we may summarize the above
discussion by writing:

W E)(P™, 3% )= U B)oep X U (2 (P*,3#)= baryon x 2 = dibaryon, e.g., deuteron . (6.2)

Now that we have a basis for SU{2based on exclusion, we can introduce thei = 1,23 of
the weak interaction operating on fermion wavefiomst (/" = (TT U ) and with this, we have a
foundation upon which to discuss specific baryonshsas the proton and neutron, specific
mesons such as t@, 77, and even specific dibaryons such as the deuteron.

Having gone from Yang-Mills magnetic charges tomomsf) baryons and mesons and
SU(3)hcp, and then on to protons and neutrons and deutgrioms and SU(3)kp X SU(2)w
using the pedagogical bridge of exclusion, let a® msk the next question: what about atoms
themselves? Is there some way based on similantowy” arguments and exclusion principles,
to progress forward to represent an entire atomleadt for the simplest atoms? Put in
pedagogical context: “What is the exclusion priteipbased on the spacetime properties of
baryons, which forces atoms into existence?” Tinslves yet another important step, because
in asking about atoms, we need electrons as wejuasks, and so, are now asking about the
quark / lepton relationship.

The other question which arises is whether threaniexplanation for fermion generation
replication to be obtained from the pedagogicalr@ggh of extracting internal symmetries from
the spacetime properties of baryons via the brafgexclusion. That is, if this pedagogy holds,
then it should also be possible to extract quamumbers such & andS for the charmed and
strange quarks, as an example, from the spacetiopeies of “regular,” as well as “plus one
rank,” baryons and currents.

7. Lepto-Quark Unification, Foundations of Atomic Structure, and Superconductivity

In the prior section, we assumed that there igrail&aneous transition fronP*"" to

P, and fromJ* to J¥. Let us relax this assumption, and ask what wbalppen — based
again on spacetime index counting alone — if weewerpopulate a fourth rank string baryon

18



P¥"  with ordinary, first rank currentd”. Similarly, we ask, what would happen if we were
to populate an ordinary third ranR?", with a second rank string curreni€”. That is, we
examine how many fermions arise from each of thehinations (P""“,J”), (P""”,J"“),
(P"””,J”), and (P"’”,J’”), Where(P,J) generally means “populate baryBrwith currents]

and then apply exclusion.” ThéP"’”,J”) combination was the focus of the discussion in
sections 4 and 5, and led via exclusion to SkHg)confinement, and short-range mesons. The
(P"””,J””) combination was examined in section 6 as summdrin (6.2), and led via

exclusion to SU(6)L! SU(3hcp X SU(2)y and a possible understanding of why deuterons are
such a fundamental nuclear building block, effeggivmirroring SU(3ycp x SU(2)y. We shall

now show how(P”“”,J“) leads to leptons and atoms, a(ﬁ’d‘”,J‘”) to generation replication.
The (P”“”,J“) combination, that is, fourth ranR*"" populated with first rankJ*,
would contain 4 = C(4,1) distinct currents basedpacetime indexes, and hence, four fermions
Yo Yoy Yoy Wiy In need of exclusion. The Yang-Mills group of @eois now SU(4).
Because we want this SU(4) to break down to S&@Bupon theP™ " to P*¥ transition, we
retain the three coloR, G, B already in place for SU(3¢p. That is, we establish SU(4) such
that SU(4)) SU(3xcp. With SU(4), comes an additional diagonal geroerdit® =1 4", which,

like the other A" for SU(3)co, is to be normalized such that( 15)2 =2. If we then assign

B-L= (\/6/3)/115 whereB is baryon number andis lepton number, then we may designate this
fourth “color” of fermion as L, and establish the SU(#)o-quak Wavefunction
Y’ :(L R G B) (see, e.g., [21], section 12.2). This fourth rd&"", but with first rank

currents J¥, now contains four fermions, three of which arars, and one of which is a
lepton. When thisP?" with J# breaks down tdP?" with J*, the three quarks will cluster
into a single baryon, while the lepton manifestasately. The resulting symmetry is now
SURBhcp + U(Q)epton  Similarly to the deuteron discussion earlier, ttven should also come to
expect that we will observe natural systems congjsif one baryon and one lepton. That is, if
SV (6)(P”"”,J"“) is the natural “template” for a deuteron, th8d (4)(P”””,J“) is the natural
“template” for an atom. To summarize:

U (4) o PP, 3%) = U g +U W1gen (P, 3#) = biaryon + lepton = atom. (7.2)

There is a wealth of evidence that this phenomeayyois also fully in accordance with nature.
When we observe atoms, we are observing the lowggmeanifestation ofSU (4)(P"””,J" )

Finally, if a fourth rank baryorP?"" may contain three quarks and a lepton without the
lepton being separate from the remaining quarks, may be able to explain the underlying
nuclear mechanism for superconductivity. For a-sgperconducting material, one encounters
resistance, presumably, because electrons traviblinggh that material cannot go “through” the
nucleons of that material, but must go “around” theeleons and so encounter “friction,” i.e.,
resistance, by virtue of numerous “collisions” witie nucleons. Now, suppose we “cool” the
material below a threshold temperatiiegesuch that the electrons then travel without rasiss,

which is, in a word, superconductivity. If thisalimg were to restoreSU (4),epto_quwk(P”””,J”)
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from SU(B)QCD+U(1)|epmn(P”‘”,J”), then the electron, being just another quark ifouwr-

fermion nucleon, would become part of the nucleord not be separate therefrom. Differently
put, an atom becomes a plurality of four-fermiomybas. Collisions would be eliminated, and
the current would then flow without resistance. ughif we regard (7.2) as describing a
transition which takes place as one goes suppges tthat is, if we regar@®U (4),q,-quk @S @
low-temperature symmetry, then (7.2) might possiidyconsidered as the underlying nuclear
mechanism for superconductivity, as well as a fbsgionnection with thermodynamics.

This becomes especially interesting in light ¢ fact that only mesons — not individual
fermions — can travel through a confinement sutfasedeveloped in section 5. Thus, once an
electron becomes a fourth color of quark at lowgerature, then even if it can coexist with
quarks inside of a single four-fermion baryon, #tectrons would still have to form leptonic
“mesons,” e'e”, that is, electron / positron pairs, in order towf through the confinement
surface. Thus, one would expect electron “paifiag, well as the presence of positron “holes,”
to be an essential signature of a superconductingmt flow. Intriguingly, Cooper pairing [22],
and Dirac holes [23], have long been part of sup®tacting theory at the electronic level.
Finally, for an U (4) gy “Paryon atom,” there is also nothing to preveatrent flows of

quark / antiquark pairs and even mixed quark / tpmsi and electron / antiquark pairs.
Therefore, one would expect to observe fractionalent flows with electrical charges af or

+Z as well ast1. This could underlie the fractional quantum Hsfect. [24]

8. The Generation Mystery, Fermion Phenomenology,ral Electric Charge Generator

Now, let's turn to (P"”V,J”V), i.e., a regular third rank baryoR*" populated with
second rank string current3”. Here, we have 3=C(3,2) index combinations, amdhsee
distinct currents and fermions. The fermions agg,,, ¥ ,,, ¢, in contrast to they,,,
Yy Y, of section 4 for which 3=C(3,1). We again foreelasion, but not the same R, G, B

exclusion of SU(Rcp. We need to find a different “3.” The one othgece of particle
phenomenology not yet addressed is generationcetigin. We do observe three generations.
And, here, we have an additional SU(3) symmetrperd of a phenomenological association.
Let us therefore, enforce exclusion by assigniese ., ¥, ¥ ., fermions to the states

€ 4, T, and regard this as an SU{g) symmetry of generation replication. Again, we &av

applied the pedagogical method of using exclusidoridge spacetime and internal symmetries.
If we do this, we can now summarize the variouysmaf “populating” a baryon, and
their associated internal symmetries, using exctuand “counting,” as follows:

For the baryons:

exclusion

(Po,uv ' J ,u) = w(,u) ’w(v) !w(o) = 3QCD = (R,G, B), (81)

For the dibaryons:

20



exclusion

(PJWT,JW) = w(aﬂ)’w(av)’w(a'r)’w(//v)’w(ﬂr)’w(vr) = 6:3x2:(R,G,B)X(ﬂ,U); (82)

For the atoms:

exclusion

(PWW’JN) = Yy oy Wio) Wiy = 4=(L.RGB); (83)

For the generations:

exclusion

(P”””, Jﬂv) — Wi Wiy Wy = Seen =(e, U, r); (8.4)

With this, we can take the “counting” argument ewestep further, and arrive at the complete
phenomenology of the elementary fermions, in thiefiong way:

In a four dimensional spacetime, 4! = 4x3x2x1 = @dscribes the number of
permutations by which the indexes of a fourth reerisor can be reordered. We have seen that
all of these factors, 4, 3, 2, show up by the wsicombinatorial arguments that led to (8.1)
through (8.4). In general, C(M,N)=M!/(M-N)!N!. keis now associate the pure numbers 4, 3,

and 2 from 4! with4 = (L,R,G,B), 3=(e,4,7), and2=(1,1), noting the origin of each of these
numbers in (8.1) through (8.4). We then @de= 4x3x2=(L,R,G,B)x (e,1,7) x (M, U) to form
exactly 24 particles. These are summarized inreiguelow:

~ 3=eur - — 3=eur -

1 Ve V, V, e U T
4= U, Cy fty dy sz by
LRGB U, C; fg d; s bg
! uB CB tB dB SB bB
2=
Figure 3

We do, in fact, find exactly 24 distinct elemegtégrmions in nature. It is now seen as
more than just happenstance, that 24 = 4! = 4x3x2x%b closely associated with the properties
of antisymmetric tensors in 4-dimensional spacetand that there are 24 known fermions
which in fact group themselves into the 4x3x2 ogunfation of Figure 3. Rather, the existence
of exactly 24 elementary fermions. It is motivatey the fundamental numeric fact that the
number 24 = 4! naturally emerges from antisymmetradd theory in a four-dimensional
spacetime, and the various ways in which baryomsbeapopulated with lower-rank currents.
The internal symmetries of the elementary fermiotigis have a direct and fundamental
connection to the symmetry of spacetime in antiswtnia field theory, via the pedagogical use
of Pauli exclusion as a bridge between spacetirdaraarnal symmetries.

At this point, the only internal symmetry left wpained is the electric

chargeQ =Y +1°%. Volovok points out in [21] Section 12.2.2, thaice B — L=(\/6/3)/115 is
established, see the previous discussion precddify that the weak hypercharge generator
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can be established with a weak right-handed SUf®)upY =1(B-L)+ 1%, and therefore, the

electric charge generator @:%(B_L)+I3R+ISL. In this circumstance, to get @, and

hence to the phenomenological SWY) x SU(2) x U(1)y, one needs to introduce the SW¢2)
degeneracy discussed in Section 6 as a left-rightreetric internal symmetry, and then uncover
how to break this chiral symmetry at low energieshat only SU(2) is observed. We leave the
guestion of chiral symmetry breaking for a sepauai@ertaking.

9. Baryon Wavefunctions

Finally, returning to the regular baryd®"“ , one may ask, “how might the wavefunction
for a baryon be related to the baryon source dert’ ?” Given thatJ” :Ti@'l'i y“z/l), see

(3.5), relates the Dirac wavefunctign for a fermion to the first-rank current source signJ*,
one may try to construct a similar expression madph baryon wavefunctio¥ to the third-rank
baryon source density?*””. BecauseP*” is fully antisymmetric, we will need, however,
rather than the Dirag/”, to employ totally-antisymmetric, third rank comations of the Dirac
y*. First, recognizing thay® =iy%"y?y?, and so using ffth-rank, totally antisymmetric Levi-
Civita tensor £ with £°%°=1, we define the “dual™ g**’ of the usual antisymmetric
objecto,, =l2[yryA —yAyr] according to:

* ghvo = %g,uva'r/l o, = izg,uvaT/l [yry/l -y, yr] (91)

The * g**?, so-defined, are totally antisymmetric in all ¢élerspacetime indexes. Then, we may
define W from P#*, analogously ta* :Ti@'l]y”w), according to:

TH{WT, * g#ow)= pre. 9.2)

For u,v,0 ranging only over the spacetime indexes 0,1,23isiclear from (9.1) and
vy’ =iy%y?y? that* o™ will always lead to an axial vector, containirfgetcommutator of a
Dirac matrix ) with a y* such thatu#5. For exampler 02 =%[y.y, - voys] =i0,. The

above discussion in this paragraph illustrates ssipte approach for development of baryon
wavefunctions. Definitive calculation, beyond #eope of this paper, will be needed to confirm
whether these constructions are physically coregad, in accordance with known understandings
of baryon wavefunctions.

10. Conclusion

As a result of the foregoing, we conclude that bleeyons may well be Yang-Mills
magnetic sources, described most simply and coitygactquation (4.2), and represented in the
Feynman diagram of Figure 1. The color group Ski{gEmerges naturally from the spacetime
symmetries of the baryon, by demanding quantumusiah for the three fermions within a
baryon. Quark and gluon confinement, and the emcst of short-range mesons mediating
strong nuclear interactions, naturally emerge frans analysis. When we consider the
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possibility of strings, quantum exclusion appearsetid also to the SU@)symmetry of weak
interactions, and to an understanding of why basymy cluster into deuteron pairs. Further
consideration leads as well to a possible undedstignof the relation between quarks and
leptons, and the origins of atoms, as well as timeldmental phenomenology of 24 elementary
fermion flavors, in a 24 = 4! = 4x3x2 = D! grouping a D=4 dimensional spacetime. An irony
is that string theory, often criticized for beingalle to predict any experimental results, appears
here, together with a careful analysis of magnstigrces in Yang-Mills field theory and the
pedagogical application of exclusion, to lay theirfdation for explaining a wide range of
phenomenology, including the observed strong / wetctromagnetic SU(8¢p X SU(2)w X
U(1)y interaction phenomenology, nuclear and atomicctire, and the observed pattern of
elementary fermions including generation replicatio
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