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Abstract:  
 We demonstrate how the existence of baryons, that is, strongly-interacting sources 

consisting of exactly three fermion constituents, is a natural consequence of Maxwell’s 

equation for a magnetic three-form P = dF = d(dG + igG2) = igdG2, with dd = 0, where F = 

dG + igG2 is a Yang-Mills (non-Abelian) field strength two-form, G is a Yang-Mills vector 

boson (e.g., gluon) one-form, and g is the group charge strength.  In particular, P = igdG2 is 

shown to naturally consist of exactly three fermion constituents, irrespective of the chosen 

Yang-Mills group.  The baryon charge B, over the finite spatial expanse of a baryon, is 

shown to be formed out of the volume integral of P, namely, ������ == 2gdGiPgB .  Pauli 

exclusion among the three fermions within B is then enforced by choosing the specific 

Yang-Mills gauge group SU(3)QCD.  Quark and gluon confinement, and the mediation of 

nuclear interactions by short-range mesons, arises via the application of Gauss’ law to a 

baryon, via ������� +== 2gGidGPgB .  If one considers the same analysis in the context of 

string theory, one may also by exclusion arrive at the weak SU(2) phenomenology, and 

other results of interest in accord with observed nuclear and atomic structure, and 

elementary fermion phenomenology including fermion generation replication. 
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1.  Introduction 
 In this paper, we pose the question “why, theoretically, do there exist in nature, naturally-
occurring sources, namely ‘baryons,’ consisting of exactly three strongly-interacting fermion 
constituents?”  The two most-common types of baryon, of course, are the proton and neutron. 
 We do know, because there are three quarks (partons) per baryon, to employ the Yang-
Mills color group SU(3)QCD with a wavefunction ( )BGRT =ψ  in the fundamental 
representation, to ensure Fermi-Pauli-Dirac exclusion.  But this does not explain why there are 
three quarks per baryon, and not some different number.  If nature were to provide 4 or 7 or 11, 
for example, then we would merely force exclusion with SU(4) or SU(7) or SU(11) instead, and 
would still be asking “why?” with respect to that different number. 
 Maxwell's equations for magnetic charges may be written in terms of a magnetic three-
form, as 0=== ddAdFP , where dAF =  is the field strength two-form and A the potential one-
form with 0=dd  for any two successive exterior derivatives.  We demonstrate here that that 
when applied to a Yang-Mills field 2igGdGF += , where G is a potential one-form and g is a 

group charge strength, the now-non-zero magnetic three-form ( ) 22 igdGigGdGddFP =+==  
turns out to consist of exactly three fermions, no mater what the rank of the chosen Yang-Mills 
group.  SU(3)QCD is then motivated simply by exclusion within this three-fermion object, while 

the baryon number B is specified by the volume-integrated three-form ������ == 2gdGiPgB .   

 Then, applying Gauss’ law, we show how gluon confinement is specified by 0=��dG , 

and quark confinement and the mediation of nuclear interactions by mesons which turn out to be 
short-range, is specified by ��= 2gGigB , where the surface integral is specified at the 

confinement barrier.  If one considers the same analysis in the context of string theory, one may 
also by exclusion arrive at the weak SU(2) phenomenology, and other results all in accord with 
observed nuclear and atomic structure and elementary particle phenomenology, including 
fermion generation replication. 
 
2.  Magnetic Sources in Yang-Mills Gauge Theory 
 
 It is well known, and can be found in virtually any elementary textbook on particle 
physics or quantum field theory e.g., [1], equation (14.40), that the field strength tensor for a 
Yang-Mills (non-Abelian) gauge theory is: 
 

νµµννµµν
kj

ijkiii GGgfGGF −∂−∂=  (2.1) 

where the µ
iG  are the gauge bosons (classical potentials) of whatever Yang-Mills group one is 

using (for instance, weak SU(2) or SU(3) QCD), ijkf  are the group structure constants, g is the 

group charge strength, and the Latin internal symmetry index 13,2,1 2 −= Ni �  for SU(N) is 
raised and lowered with the unit matrix ijδ .  Multiplying (2.1) through by the group generators 

iT , and employing the group structure [ ]kj
i

ijk TTiTf ,−= , one can readily rewrite (2.1) as: 
 

[ ]νµµννµµν GGigGGF ,+∂−∂= , (2.2) 



2 

where µνµν
i

i FTF ≡  and µµ
i

iGTG ≡  are NxN matrices for SU(N).  Multiplying through by 

νµdxdx , and using the forms µ
µdxGG = , νµ

µν
νµ

µν dxdxFdxdxFF =∧= !2
1 , 

[ ] [ ] [ ] νµ
νµ

νµ
νµ dxdxGGdxdxGGGGG ,,, !2

12 =∧== , ( ) νµ
µννµ

νµ
νµ dxdxGGdxdxGdG ∂−∂=∧∂= ,  

in well-known fashion, this further compacts to (see [2], Chapter (4.5)): 
 

2igGdGF += . (2.3) 

 Starting with (2.2), let us now form the third-rank antisymmetric tensor σµνσµν
i

i PTP ≡  
for what is colloquially referred to as a “magnetic charge,” as such: 
 

[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( )µνσµσνσµνσνµνσµνµσ

µσνσνµνµσσµννσµµνσσµν

GGGGGGGGGGGGig

GGGGGGigFFFP

∂+∂+∂+∂+∂+∂=
∂+∂+∂=∂+∂+∂=

,,,,,,

,,,
. (2.4) 

Using the magnetic three-form νµσ
σµν

νµσ
σµν dxdxdxPdxdxdxPP =∧∧= !3

1 , as well as 

( ) νµσ
σµννσµµνσ

νµσ
µνσ dxdxdxFFFdxdxdxFdF ∂+∂+∂=∧∧∂= !2

1  and also 

[ ] [ ] [ ] [ ]( ) νµσ
µσνσνµνµσ

νµσ
νµσ dxdxdxGGGGGGdxdxdxGGddG ,,,,!2

12 ∂+∂+∂=∧∧= , 

equation (2.4) can be multiplied through by νµσ dxdxdx  and then expressed in compacted form: 
 

( ) [ ] [ ]( )dGGGdGigigdGigGdGddFP ,,22 +==+== . (2.5) 

Above, though we have employed 0=dd , a residual, non-zero self-interaction term 2igdG  
remains. 
 Now, for a U(1) interaction such as electromagnetism, which omits the non-linear term 

2G , and because 0=dd , we of course have 0== dFP , which is Maxwell’s magnetic equation, 
and which is often taken to state that there are no magnetic charges, only electric ones.  
Mathematically, we may state that F is a closed form in Abelian gauge theory, but that in Yang-
Mills theory, F is open, and so, importantly, gives rise upon further differentiation to the non-
zero σµνP  in (2.4), and the non-zero three-form P in (2.5). 
 Because we know of at least two interactions – weak and strong – where Yang-Mills 
gauge groups are in accord with observed physical reality, one should expect to come upon the 
non-zero magnetic three-forms 2igdGP =  of (2.5) for both interactions.  T’hooft & Polyakov [3] 
and others have previously pointed out that Yang-Mills field theory seems to give rise to 
magnetic monopoles, but to date, no connection has been made from this line of inquiry to 
anything which has been experimentally observed.   So, it behooves us to ask: “might these 
magnetic three-forms represent anything we have ever observed in the physical world?” 
 Because P is formed after taking two derivatives of the gauge potentials G (with 0=dd  
dropping out but 2igdG  remaining), it is a “source” in the same sense as the current density four-

vector specified by Maxwell’s equation νµ
µ

µν
µ

ν AFJ ∂∂=∂= ; 0=∂ µ
µ A  for “electric sources.”  

As we now show, the integral objects ��������� === 2gdGidFPB , may well represent the 

baryons which serve as the foundation of nuclear matter, where B is the baryon number charge. 
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3.  Further Development of Yang-Mills Magnetic Sources 
 
 In this section, we shall perform some calculations which will enable us to connect the 
three-form P to baryons, especially on consideration of the resulting Feynman diagrams.  
Starting with (2.4), first, let us work with the terms µσG∂ .  Here, we employ the quantum 
mechanical operator equation: 
 

[ ]µσµσ GqiG ,=∂ , (3.1) 

see, for example, [4], just after equation (2.164).  Substituting the above into (2.4) yields: 
 

[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]( )µνσµσνσµνσνµνσµνµσσµν GqGGGqGqGGGqGqGGGqgP ,,,,,,,,,,,, +++++−= .(3.2) 

If we expand the commutators in the above, terms of the form  νσµνσµ GqGGqG −  appear 
throughout, so that all terms with σq  sandwiched between the two µG  drop out.  Then, re-
consolidating the commutators, (3.2) reduces to: 
 

[ ][ ] [ ][ ] [ ][ ]( )νµσµσνσνµσµν qGGqGGqGGgP ,,,,,, +++= . (3.3) 

Multiplying through by νµσ dxdxdx , and using [ ] νµ
νµ dxdxGGG ,2 =  and νµσ

σµν dxdxdxPP = , see 

above (2.3) and (2.5), as well as µ
µdxqq = , the above compacts to: 

 
[ ] [ ] [ ] [ ]( )( )ν

ν
µ

µ
σ

σ dxqGdxqGdxqGgqGgP ,,,,3 2222 +++== . (3.4) 

The factor of 3 in the above is the first sign of a baryon.  It is important to note that this factor of 
3 does not at all depend on the specific choice of Yang-Mills group, that is, one does not need to 
posit SU(3) for the factor of 3 to emerge naturally in (3.4).  In fact, it arises because Maxwell’s 
magnetic equation, in tensor form, has three additive terms in order to form the antisymmetric 
third-rank tensor σµνP . 
 Now, let us work with the potentials µG  in (3.3).  Absent a longitudinal degree of 
freedom through some spontaneous symmetry breaking mechanism, we take the µG  to represent 
massless vector bosons, analogous to the photon µA  which mediates electromagnetic 
interactions, and like the gluons which we believe mediate strong interactions between quarks.  
In QED, one typically starts with Maxwell’s equation for the electromagnetic current 

µτ
τ

µ AJ ∂∂=  in covariant gauge 0=∂ µ
µ A  with τ

τµµ ε xiqeA −= , and thereby establishes the 

relation ( ) µµ JqA 2/1−=  between the µA  and µJ , where σ
σ qqq =2  is the squared photon 

momentum.  The µJ  in turn relates to a given fermion wavefunction ψ , for example, the 

electron or a quark, according to ψγψ µµ QJ =  where Q is the U(1) electric charge generator and 
µγ  are the Dirac matrices.   It is also well-known that for massive rather than massless bosons, 

the term 2/1 q  migrates to ( )22/1 Mq − , where M  is the vector boson mass.  And, there are 
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known methods for dealing with poles in 2/1 q  or ( )22/1 Mq −  (or other terms in propagators), 
for example, the εi+  prescription which also bears a known relation to boson widths / lifetimes. 
 With this QED point of reference, let us analogously relate the µG , which we are taking 
to be massless, to their associated Yang-Mills current µJ , using the relationship: 
 

( ))()(2
)(

2
)(

11
µ

µ
µ

µ

µ

µ

µ ψγψ i
i TT

q
J

q
G −=−= . (3.5) 

Here, µµ
i

iGTG ≡ , µµ
i

i JTJ = , )()( µ
µ

µ
µ ψγψ ii TJ = , and the )(µ  on the squared boson momentum 

σµ
σ

µµ )()(
2

)( qqq =  and the fermion wavefunction )(µψ  is a label, not an index, for later use, 

denoting the spacetime index of the boson µG  and current µJ  with which it is associated.  For a 
gauge group SU(N), the )(µψ  contains N Dirac spinors in the fundamental group representation. 
 We then return to (3.3), which, using the first two terms in (3.5), we may rewrite as: 
 

[ ][ ] [ ][ ] [ ][ ]
�
�

�

�

�
�

�

�
+++= νµσ

µσ

µσν

σν

σνµ

νµ

σµν qJJ
qq

qJJ
qq

qJJ
qq

gP ,,
1

,,
1

,,
1

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

. (3.6) 

Using [ ] [ ] [ ]JJdxdxJJdxdxJJJ ,,,!2
12 ==∧= νµ

νµ
νµ

νµ  and µ
µdxqq = , (3.6) compacts to: 

 

[ ]qJ
qqq

qqq
gP ,2

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

�
�

�

�

�
�

�

� ++
=

σνµ

νµσ . (3.7) 

Contrast (3.4) where a factor 3 arose, to the above “Pythagorean” sum of three square momenta. 
 Then, inserting ( ) )()()()( µ

µ
µµ

µ
µ

µ ψγψψγψ i
i

i
i TTTTJ ==  from (3.5) into (3.6), yields: 

 

[ ][ ]

[ ][ ]

[ ][ ]��
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

+

+

=

ν
µ

µ
µσ

σ
σ

µσ

µ
σ

σ
σν

ν
ν

σν

σ
ν

ν
νµ

µ
µ

νµ

σµν

ψγψψγψ

ψγψψγψ

ψγψψγψ

qTTTT
qq

qTTTT
qq

qTTTT
qq

gP

i
i

i
i

i
i

i
i

i
i

i
i

,,
1

,,
1

,,
1

)()()()(2
)(

2
)(

)()()()(2
)(

2
)(

)()()()(2
)(

2
)(

. (3.8) 

 Finally, we add one more set of labels to (3.8).  Taking, as an example, the top line of the 
above, let us work from right to left, and regard the right-most fermion )(νψ  to be in state “1,” 

the middle fermions )(νψ  and )(µψ  to be in state “2,” and the left-most fermion )(µψ  to be in 
state “3.”  We do the same for the other two lines as well.  Thus, we now refer to the three 
distinct )(µψ , )(νψ  and )(σψ , as the “ µ ”,“ν ”, and “σ ” fermion wavefunctions, and to each such 
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wavefunction being in state “1,” “2,” or “3.”  Thus, for example, )2(µψ  designates the “ µ ” 
fermion in state “2.”  With this labeling, (3.8) now becomes: 
 

[ ][ ]

[ ][ ]

[ ][ ]��
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

+

+

+

=

ν
µ

µ
µσ

σ
σ

µσ

µ
σ

σ
σν

ν
ν

σν

σ
ν

ν
νµ

µ
µ

νµ

σµν

ψγψψγψ

ψγψψγψ

ψγψψγψ

qTTTT
qq

qTTTT
qq

qTTTT
qq

gP

i
i

i
i

i
i

i
i

i
i

i
i

,,
1

,,
1

,,
1

)1()2()2()3(2
)(

2
)(

)1()2()2()3(2
)(

2
)(

)1()2()2()3(2
)(

2
)(

. (3.9) 

 Now, we are ready to make the connection to baryons. 
 
4.  The Theoretical Formulation of Baryons  
 
 We proceed to draw a Feynman diagram from (3.9), illustrated in Figure 1 below, using 
the following rules: 
 
1)  For the term [ ][ ]σ

ν
ν

νµ
µ

µ ψγψψγψ qTTTT i
i

i
i ,, )1()2()2()3(  in the top line of the above,  we draw 

this as a fermion-fermion interaction between the current )1()2( ν
ν

ν ψγψ i
iTT  and the current 

)2()3( µ
µ

µ ψγψ i
iTT  mediated by the vector boson σG  with momentum σq .  We do the same for the 

other two terms of (3.9), thus producing three distinct Feynman diagrams for fermion-fermion 
interactions mediated by vector bosons. 
 
2)  Very importantly, we then interconnect all lines from all three terms.  In particular, we make 
sure that each of )1(µψ , )2(µψ  and )3(µψ , representing different states of the same fermion )(µψ , 

all reside on the same fermion line.  Similarly for )(νψ  and )(σψ , in each of states 1, 2, and 3.   

By following this rule, we find that µq  naturally ends up on the opposite side of the diagram 
from ( )µψ , and similarly for νq  from ( )νψ  and σq  from ( )σψ . 
 
3)  We regard the presence of commutators throughout (3.9) as indicating that directional lines 
on the Feynman diagrams can be drawn in either direction relative to a given line.  Thus, e.g., 
from (3.6), in the term [ ][ ] [ ] [ ]νµσσνµσνµ JJqqJJqJJ ,,,, −= , we take [ ] σνµ qJJ ,  to indicate a 
directional arrow showing σq  propagation from νJ  to µJ , we take [ ]νµσ JJq ,−  to show reverse 
propagation of σq  from µJ  to νJ , and we take the overall [ ][ ]σνµ qJJ ,,  to thereby indicate non-
specificity of direction of σq .  Similarly, we take νµ JJ  in [ ] µννµνµ JJJJJJ −=, , to represent 
one set of directional arrows for the associated fermions ( )µψ  and ( )νψ , we take µν JJ−  to 

represent reversed arrows, and we take the overall [ ]νµ JJ ,  to indicate non-specificity of 
direction of propagation for the fermions ( )µψ ,  ( )νψ . 
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4)  We place µγi
iTT  at the vertex between all of the )(µψ  and )(µψ , we place νγi

iTT  between all 

of the )(νψ  and )(νψ , and we place σγi
iTT  between all of the )(σψ  and )(σψ . 

 
5)  We draw a dashed line between state “3” and state “1”, to represent an iterative “recycling” 
between state 3 and state 1.  One may think of this a being in the nature of a “finite state 
machine” which iteratively cycles from states 1 � 2 � 3/1 � 2 � 3/1 � 2 � 3, or the reverse, 
depending on how one chooses directional arrows once those are added (note rule 3). 
 
6)  Using the diagram resulting from rules 1-5, we now remove the vector boson lines, and draw 
an equivalent second diagram showing only the fermions in the form of three interconnected, 
three-node, four-branch Mandelstam diagrams. 
 
7)  To establish the s, t, u scattering channels of this “three-node” Mandelstam diagram, we now 
draw both diagrams with directional lines, wherein the lines on the fermions point forward from 
state 1 to state 2 to state 3 and then back again to state 1.  As between any two fermions with 
their interaction mediated by a vector boson, this means that the Fermion lines will be 
automatically reversed relatively to one another.  Thus for example, in the commentator term 
( ) ( )[ ] σ

ν
ν

νµ
µ

µ ψγψψγψ qTTTT i
i

i
i ,, )1()2()2()3(  of (3.9), if we take the right hand term )1()2( ν

ν
ν ψγψ i

iTT  

to represent “forward” propagation of the )(νψ  fermion, then the left-hand term )2()3( µ
µ

µ ψγψ i
iTT  

will automatically represent “backward” propagation of the )(µψ  fermion.  This will be a very 
important feature, when we shortly examine how mesons arise.  We label each node of the 
associated three-node Mandelstam diagram as “s,” thereby establishing this choice of directional 
lines as the s-channel for all three nodes.  The other channels t, u can then be arrived at in the 
usual manner, as can other diagrams from “crossing” various lines. 
 
 The resulting diagrams, representing equation (3.9), are below: 

   
 We now find that the Yang-Mills magnetic source µνσP  in (3.9) inherently contains 
exactly three fermion constituents, importantly, irrespective of the rank N>1 of the Yang-Mills 
gauge group.   Nowhere in this derivation have we at any time had to assume that we were using 
SU(3).  Might such a naturally-occurring, three-fermion source, be related to a baryon? 
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 Having established a three fermion source, now let’s proceed to make this “strong.”  
Here, we turn to Fermi-Dirac statistics, and particularly, to the Pauli exclusion principle which 
will play a central role throughout the remaining development.  Given the natural emergence of 
three fermions in Figure 1, and if we require that each of the three fermions in µνσP  possess a 
distinct quantum number for the purpose of satisfying Fermi-Dirac statistics / Pauli exclusion, 
then we are compelled to choose the group SU(3) to generate exclusion.  So, now, we formally 
choose SU(3) as our Yang-Mills gauge group, and we assign all of the wavefunctions ψ   in the 
above to the fundamental “color” representation of SU(3), ( )BGRT =ψ , and choose as the 
group generators, the familiar 3x3 matrices iiT λ2

1= .  We also assign sgg ≡ , the strong charge 
strength.  Note, however, that we do not assign color on a one-to-one correspondence with the 
spacetime index.  Rather, we assign ( ))()()()( µµµµψ BGRT = , ( ))()()()( ννννψ BGRT = , 

( ))()()()( σσσσψ BGRT =  so that each of the three fermions can assume the various color states 
with the overall set of interactions in Figure 1.  The net result is a “colorless” baryon, as we shall 
see in the next section when we examine quark and gluon confinement. 
 In establishing SU(3)QCD in this way, we make an extremely useful pedagogical 
connection between spacetime and internal symmetry, using Pauli exclusion as a “bridge.”  
Specifically, Maxwell’s magnetic equation, coupled with Yang-Mills gauge theory, leads 
inexorably to objects consisting of exactly three fermions, as shown in Figure 1.  Each of the 
fermions )(µψ , )(νψ  and )(σψ , is associated with one of three spacetime indexes from their 

currents µJ , νJ , σJ , respectively.  Then, having three fermions, we choose SU(3) to enforce 
exclusion, and so come upon QCD in a very natural way, with the internal symmetry of strong 
interactions, SU(3)QCD, emerging uniquely from the spacetime properties of µνσP , via exclusion.  
It bears emphasis again, that we arrived at Figure 1 solely by examining the spacetime properties 
of µνσP , without ever resorting to any assumption about any particular Yang-Mills gauge group, 
and then used exclusion as the bridge to choose SU(3).  We shall return to this bridge in section 6 
and thereafter, as it will point the way toward weak / strong unification, lepto-quark unification, 
and the structure of both atomic nuclei and atoms. 
 Now, we note that the magnetic tensor µνσP , like, for example, a current vector µJ , is a 
density, locally defined.  To describe a “whole” baryon, we will want to integrate the µνσP  
density over a suitable spatial volume which we know from experiment is on the order of 1 
Fermi3.  The fact that µνσP  is already, naturally, antisymmetric and of third rank, is perfect to 
establish a three form for the necessary volume integration, and directly lends credence to the 
fact that µνσP  represents a baryon, which is best understood with reference to integration over a 
finite, three-dimensional volume, just what one would expect.  Thus, referring to (2.5), (3.4), and 
(3.7), we now integrate the baryon source density µνσP  over the 3-form νµσ

σµν dxdxdxPP = , to 
establish the formal, covariant expression for a whole baryon, including the quantized baryon 
number charge B = 1, 2, 3, . . . multiplied by the external charge strength sg , as follows: 
 

( ) [ ]

[ ] [ ][ ]������

���������������

�
�

�

�

�
�

�

� ++
=

�
�

�

�

�
�

�

� ++
=

==+===

qCCCC
qqq

qqq
gqJ

qqq

qqq
g

qGgdGgiGigdGddFPBg

ss

ssss

,,,

,3

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

4
12

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

222

σνµ

νµσ

σνµ

νµσ
. (4.2) 
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The final term, employing [ ]CCCCJ ,4
12 = , is based on forming the specific SU(3)QCD currents 

ψγψ µµµ
i

i
i

i TTJTJ == , according to: 

 

CC

BBGGRRBGBR

GBBBGGRRGR

RBRGBBGGRR

J 2
1

3
2

3
1

3
1

3
1

3
2

3
1

3
1

3
1

3
2

2
1 ≡

��
�
�

�

�

��
�
�

�

�

+−−
−+−

−−
= , (4.3) 

where CC  above compactly represents the illustrated 33×  color matrix, and where, for a Dirac 
spinor in color state  R, we define the one-form µ

µγ RdxRRR ≡ , and similarly for other colors.  

Because [ ]CCCC ,  is a 3x3 matrix product of two 3x3 currents (4.3), the baryon (4.2) is, formally 

speaking, also a 3x3 matrix, transforming under the SU(3)QCD as [ ]33,33 . 

 It is also noteworthy that the scalar (number) term 
�
�

�

�

�
�

�

� ++
2

)(
2

)(
2

)(

2
)(

2
)(

2
)(

σνµ

νµσ

qqq

qqq
g s  in (4.2), has 

its origin in the 2
)(/1 µq  of (3.5), and that 2

)(/1 µq  is ordinarily part of a propagator term.  Thus, it 
may be worth further investigation to ascertain if this scalar term in (3.7) is somehow connected 
to the propagator for a baryon, and may in some way also be helpful in understanding baryon, 
e.g., proton and neutron, rest masses. 
 It must be stated that so far, we have only described a baryon in terms of its SU(3)QCD 
properties, but that this is not yet a real observed baryon, say, a proton or a neutron, because we 
have not yet addressed the question of from whence the SU(2)W weak isospin quantum number 

3I  originates.  The emergence of SU(2)W via exclusion, will be the subject of section 6. 
 Most importantly, for the moment, these three fermions are all naturally bound together 
in a single, integrated source, emanating from Maxwell’s magnetic equations, and so the 
question “why are quarks confined?” has the simple, implicit answer that they are merely the 
individual constituents of the naturally-occurring, inseparable, three-fermion system specified in 
(4.2).  Let us now explore further, what the foregoing may explicitly teach us about quark and 
gluon confinement, as well as what we can learn about the only entities which are not confined, 
namely, the short-range, short-lifetime mesons which bind together the atomic nucleus. 
 
5.  Quark and Gluon Confinement, Mesons, and Short-Range Nuclear Interactions 
 
 The goal of this section, based on the above development of a baryon, is to achieve 
confinement in a manner analogous to the so-called “MIT Bag Model” [5], [6] by paying close 
attention to what does and does not flow across the confinement surface of a baryon, but without 
an ad-hoc backpressure, and in a way that explains why the nuclear interaction is mediated by 
mesons.  Many others have also made various efforts to solve the confinement problem, e.g., [7], 
[8], [9], [10], [11], [12], [13], [14], [15].  Nambu first realized that colored magnetic monopoles, 
if placed in a QCD vacuum with superconducting properties, would form flux tubes due to 
Meissner effect, which could help to explain confinement. [16] 
 To approach confinement, we take Maxwell’s equations as our point of reference.  Using 
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differential forms, these are of course given by dAdFdJ *** ==  and 0=== ddAdFP , with 
dAF = .  The “*” denotes “duality,” defined in tensor notation as στ

µνστµν ε FF !2
1* =  for the field 

strength and τ
σµντσµν ε JJ =*  for the current density, where µνστε  is the totally-antisymmetric 

Levi-Civita tensor.  (The duality formalism was first developed by Reinich [17], and later 
elaborated by Wheeler, see [18], and [19], sections 3 and 4.)  To write these equations in integral 
form, we use Gauss’ law for a given p-form H, namely, ��

−

=
1dd

HdH , where d is the 

dimensionality of the closed surface over which the integration takes place.  Thus, Maxwell’s 
integral equations may be, and often are, written as: 
 

������������� ===== dAFdAdFdJeQ ***** , (5.1) 

������������� ===== dAFddAdFP0 . (5.2) 

In (5.1), Q is the total electric charge contained within the three-dimensional volume of 
integration, e is the running charge strength, and �� F*  is the total (net) electric field flux 

through the closed two-dimensional surface of the integration volume.  �� F*  is equal to Q, 

which, of course, is quantized.  In (5.2), because of 0=ddA , the total “magnetic charge” 
contained within the three-dimensional volume is zero, and the net magnetic field flux through 
the closed two-dimensional surface of that volume, is also equal to zero. 
 Baryons, insofar as they are understood at this time, present a “hybrid” of features from 
both equations (5.1) and (5.2).   They are similar to (5.1), ���= JeQ * , insofar as the total 

baryon charge B contained within the baryon volume is non-zero and quantized.  They are 
similar to (5.2), 0== ���� dAF , however, because despite a non-zero charge within the baryon 

volume, there are no gluons flowing across the boundary of the baryon volume.  It is as if there is 
an electric charge inside the surface of integration, yet one can nevertheless shut down the 
electric field and the flow of photons through that surface.  Further there are no currents of 
individual quarks flowing across the boundary.  What does flow across the boundary, however, 
are color-neutral mesons with extremely short range and short lifetime, consisting of quark / anti-
quark pairs, which bind nucleons together to form atomic nuclei. 
 Now, to show confinement, and a nexus to strong, nuclear interactions, one would need 
to establish five points, i.e., “legs of confinement”: 1) a non-zero baryon charge occupying the 
volume within the confinement boundary; 2) no gluons flowing across the boundary; 3) mesons, 
i.e., quark / antiquark pairs, which do flow across the boundary; 4) a very short range and 
lifetime for these mesons, i.e., mesons which are very unstable; and 5) no individual quarks 
flowing across the boundary.  We shall address these in sequence. 
 To start, let us apply Gauss’ law to see what (4.2) teaches us about what does and does 
not flow through the confinement boundary of a baryon.  In particular, we write a set of integral 
equations similar to (5.1) and (5.2), and we regard the integration surface to be the outer 
confinement surface of the baryon, that is, the ~1 Fermi barrier within which gluons and quarks, 
i.e., color charges, are thought to be confined.  By Gauss, and with 0=ddG , we write (4.2) as: 
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( ) ������������������ +===+=== 222 GgidGFdGgiGigdGddFPBg ssss . (5.3) 

Now, in (5.3), B is a scalar quantity which represents the baryon number of the baryon, similar in 
nature to electric charge Q.  In general, B=1,2,3… is quantized, similarly to Q.  Equation (5.3) 
says that we do have a non-zero baryon charge inside the confinement surface.  That is “leg 1.”  
For the moment, we consider a single baryon, B=1. 
 Now, we examine the sub-equation ������� += 22 GgidGdGgi ss  in the above, where 

we purposely separate the surface integral into two terms.  By Gauss, ����� = 22 GdG , we 

deduce: 
 

0=��dG . (5.4) 

This is very similar to Maxwell’s magnetic equation 0=��dA  from (5.2), this may be 

interpreted to state that there is no colored field flux, i.e., no gluon flux, across the confinement 
surface.  This is the second leg of confinement (point 2). 
 With (5.4) above, (5.3) reduces to: 
 

��= 2GgiBg ss , (5.5) 

which yields the remaining three legs of confinement, and which we shall now explore in detail. 
 First, expanding with [ ] µν

µν dxdxGGG ,2 = , we again use (3.5) to write: 
 

[ ] [ ] [ ])1()2()2()3(2
)(

2
)(

2
)(

2
)(

,
1

,
1

, µ
µ

µν
ν

ν
µν

µν

µν

µν ψγψψγψ i
i

i
i TTTT

qq
JJ

qq
GG == , (5.6) 

where we have switched the νµ,  indexes to [ ] [ ]νµµν GGGG ,, −=  to facilitate momentary 
comparison to Figure 1, and where we have also introduced the same “1,” “2,” “3” states as 
previously.  Contrasting, we see that (5.6) is very similar to each of the three main terms in (3.6) 
and (3.9).  The differences to note, however, are that (5.6) only contains one such term, not three, 
and that the term is only [ ]µν JJ , , not [ ][ ]σµν qJJ ,, , i.e., there is no commutation relationship 
with a gluon momentum σq . 
 Now, let see if we can draw a Feynman diagram for the last term in (5.6), similarly to 
how we drew Figure 1 earlier.  It is helpful to compare (5.6) to the first term in each of (3.6) and 
(3.9), for the interaction between the )(µψ  and )(νψ  fermions.  It is also helpful to compare the 
above-noted equations to the lower-left Mandelstam node in Figure 1, because that node 
illustrates this interaction between these )(µψ  and )(νψ  fermions. 
 First, in Figure 2 below, we isolate from Figure 1, only that portion of Figure 1 which 
represents this  )(µψ , )(νψ  interaction.  Second, because there is no commutation relationship 
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with a gluon momentum σq  in (5.6), we place an “X” over the gluon line, and also, inside the 
Mandelstam node in place of the “s.”  Then, we simply take the Mandelstam part of the diagram, 
and draw the )(µψ  and )(νψ  lines parallel to one another.  Finally, noting the relative orientation 

of the arrows as extracted from Figure 1, we reverse the lines for )(νψ , and then represent this as 

the anti-fermion )(νψ .  We end up, at the lower right of Figure 2, with an quark / anti-quark pair 
which looks just like how one might draw a meson.  Mesons are known to mediate nuclear 
interactions, they are known to be very unstable with short range and lifetime, and they are 
known from numerous experiments to be the only type of particle which can penetrate a 
confinement surface.  Multiplying (5.6) through by 2

)(
2

)( µν qq , this is all illustrated below. 

    
Reviewing Figure 2, is appears that the non-linear term [ ] µν

µν dxdxGGG ,2 = , which is at the 
center of Yang-Mills gauge theory, in some manner represents a meson.  We see too, that in 
[ ]µν JJ , , the right-side current µJ  represents the quark current of the meson, and the left-side 
current νJ  represents the antiquark current of the meson.  Let us now formalize this connection. 
 Going back to (5.5), the expression [ ] µν

µν dxdxGGgiBg ss ,��=  tells us that [ ]µν GGigs ,  

is what flows through the confinement barrier.  If [ ]µν GGigs ,  is representative of a meson, then 

[ ] µν
µν dxdxGGgiBg ss ,��=  is a simple declarative statement that “mesons flow through the 

confinement surface,” which is the fourth leg of confinement.  Pursuing this possibility, let us 
now define a second rank, antisymmetric, “meso-electromagnetic” field tensor: 
 

[ ] [ ]µνµν

µν

νµ GGigJJ
qq

ig
M s

s ,,2
)(

2
)(

=≡ . (5.7) 

We may then use the above to rewrite (5.5), with 2GigdxdxMM s== µν
νµ , as: 
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[ ] [ ]

����

��������

=≡

====

MdxdxM

dxdxJJ
qq

g
idxdxGGgiJ

qq

g
iGgiBg s

s
s

ss

µν
νµ

µν
µν

µν
µν

µν

µν

,, 2
)(

2
)(

2
2

)(
2

)(

2

. (5.8) 

 Now, we focus on ��= MBg s , which is identical in form to Maxwell’s equation (5.1), 

��= FeQ * .  Very importantly, however, in the above, 2GigM s= , while in contrast, for 

Maxwell’s equation (5.1),  dAF = .  If we define νµ
iM  according to  νµνµ MMT i

i ≡  for the 
iiT λ2

1=  of SU(3)QCD, we may then couch this contrast with Maxwell’s (5.1) even more 

pointedly by defining the components of νµ
iM  as: 

 

i

i

BBE

BBE

BBE

EEE

M

��
�
�
�

�

�

��
�
�
�

�

�

−
−

−
−−−

≡

0
0

0
0

123

132

231

321

νµ . (5.9) 

 With ��= MBg s  and (5.9), we may then think of the strong interaction between 

baryons, classically, being mediated by a meso-electromagnetic field, where E is the “meso-
electric” and the B is the “meso-magnetic” field.  We may then follow Faraday by drawing a 
baryon with field lines emanating therefrom, precisely like for an electric charge, right down to 
the meso-magnetic field B arising from relative motion between baryons.  With the first-rank 
dual νστ

µνστµ ε PP !3
1* =  of a baryon (see [19], equation (3.51)), one may even think about a 

classical Lorentz-force analog of the form µ
µ

νν τ PMddp */ = , where νν
i

i pTp ≡  is a Yang-
Mills, 3x3 momentum vector for a baryon density νστP  under the influence of a meso-

electromagnetic field µ
νM .  However – and this becomes a critical point – for the 

electromagnetic interaction, dAF = , and this is an inverse-square, long-range interaction.  For 
the nuclear interaction, in contrast, 2GigM s= , and this is a short range interaction.  This is the 

only difference between ��= MBg s  and ��= FeQ * .  If the nuclear interaction is to be short 

range, then this short range must arise from the fact that 2GigM s=  for nuclear interactions, in 
contrast to the fact that dAF =  for electromagnetic interactions.  How might this occur? 
 Now, focus on the other interesting difference between the [ ]µν JJ , -only term in (5.6), 
(5.8) and Figure 2, and the [ ][ ]σµν qJJ ,,  terms in (3.6), (3.9) and Figure 1.  The absence of any 
commutation with σq  means that in contrast to Figure 1, there is no gluon mediating between the 
quark-antiquark pair in Figure 2.  That is represented by the “Xs” in Figure 2.  The absence of a 
commuting σq  suggests that the meson will be a highly-unstable particle, because there is no 
vector boson mediator to permanently bind together the quark and antiquark.  This is but a short-
lived association, because if a quark and antiquark wish to “jet” out of the baryon together, they 
may do so, but they leave behind any gluons which might bind them together.  Since a meson 
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field [ ]µννµ JJM ,~  only is emitted and absorbed by a baryon in the form of [ ]µν JJ ,  currents, 
i.e., quark / anti-quark pairs, since there are no vector boson mediators binding the meson 
together (we leave open the prospect of scalar boson mediators which may provide a mass 
mechanism), and since the very existence of the νµM  depends on the unbound [ ]µν JJ ,  currents 
remaining together, the meson will decay after a very short time.  For example, if the meson is a 

ddu += µπ 02  meson, it may decay into the vacuum via an electron-positron pair and gamma 
ray with a half-life of about 10-16 seconds.  Or, it may after its brief run be absorbed back into a 
baryon, be it the original baryon, or a nearby baryon.  In any event, while ��= MBg s  bears a 

clear resemblance to Maxwell’s charge equation ��= FeQ *  insofar as how one would envision 

the meso-electromagnetic Faraday-type field lines surrounding a baryon, the unstable, unbound 
2GigM s= , in contrast to the stable dAF = , causes the strong interaction to have extreme short 

range in contrast to the unlimited range of electromagnetism.  dAF =  originates in a single 
vector particle.  2GigM s=  depends on an association of two fermions which have no vector 
bosons binding them together.  The electromagnetic interaction is mediated by vector boons 
(photons) and is long-range and stable.  The nuclear interaction is mediated by mesons which are 
highly unstable, and therefore, will live over only a very short range and lifetime.  These are the 
third and fourth legs of confinement. 
 Finally we then ask, what about individual quarks?  Can they flow across the 

confinement barrier also?  Equation (5.8), specifically, ��= 2
2

)(
2

)(

J
qq

g
iBg s

s
µν

, says “no, they 

cannot.”  While currents of quarks µJ  can and do flow through the confinement barrier, they 
never do so alone, but only in pairs with an antiquark current νJ , in the [ ]µν JJJ ,2 =  
configuration which underlies the mesons.  No individual gluons µG .  No individual currents 

µJ .  Only mesons [ ]µν JJ ,~  can be emitted or absorbed through the barrier of a baryon.  This is 
the fifth and final leg of confinement. 
 It is also to be observed, that the confinement of individual quarks, in favor of mesons 
being allowed to penetrate the baryon surface, is enforced by the very structure of the differential 
forms spacetime geometry.  If we are talking about flow across the confinement surface, we are 
talking about flow through area elements µν dxdx .  This needs to be contracted with a second 

rank antisymmetric tensor, such as the field strength tensor νµF  in Maxwell’s equations, see 
(5.2), or the meson field νµM  of (5.7), (5.9).  Single-fermion currents are first or third rank-only, 
not second rank, see, e.g., (5.1) where we employ the current three-form τ

σµντσµν ε JJ =* .  The 

best we can do, is contract the first-rank currents νJ , µJ  with µν dxdx  in [ ]µν JJ ,  quark / 
antiquark meson pairs.  In this way, the existence of mesons as the mediators of strong 
interactions, and the confinement of quark currents such that they cannot cross the barrier unless 
accompanied by an anti-quark currents, spring directly from the structure of the differential 
geometry.  Confinement of quarks, and passage of mesons, is geometrically-mandated. 
 We may now proceed to encapsulate all of the above into very compact form, bearing a 
close resemblance with Maxwell’s integral equations (5.1), (5.2), but with the crucial differences 
developed above.  Because the baryon three-form is given by 2dGigP s= , equation (2.5), and 
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the meson two-form is given by 2GigM s= , see (5.8), we may now relate baryons directly to 
mesons in differential form, by way of the very direct, simple equation (contrast 

dAdFdJ *** == ): 
 

2dGigdMP s==  . (5.10) 

In integral form, using Gauss’ law, this becomes: 
 
                                                                                     versus  ������� === dAFJeQ *** .(5.11) 

Reproducing (5.4), and applying Gauss’ law along with (2.3) as 2igGFdG −=  and ��= 2gGiB  

from above, one also has:  
 
                                                                                      versus   0=== ������� FdAddA . (5.12) 

Although 2GigM s=  and 2GigdGF s+=  so that dGMF += , the combination of ��= MBg s  

from (5.11) and ��= FBg s  from (5.12) tells us, across the baryon surface, that: 

���� = MF . (5.13) 

From outside the baryon, the meso-electromagnetic field strength M is indistinguishable from the 
field strength F because 0=��dG .  We can describe this in terms of a new, local gauge vector 

symmetry, as follows:  If we write dGMF +=  as ][ µνµνµν GMF ∂+= , then (5.11) and (5.12) 
are invariant under the local gauge transformation µνµνµνµνµν MGFFF =∂−=→ ][' .  Contrast 
this to both Λ∂+=→ µµµµ AAA '  and the gravitational )(' νµµνµνµν Λ∂+=→ ggg .  In form 
language: the nuclear interaction (outside the baryons) is invariant under MdGFFF =−=→ ' .  
Because of this, we can then transform to a gauge in which: 
 

MF = , (5.14) 

and thus identify the field strength F directly with the meso-electromagnetic M of (5.9).  This 
invariance of the nuclear (baryon) interaction under MdGFFF =−=→ ' , is another way of 
stating that nuclear interactions are colorless. 
 All of the essential features of confinement and nuclear interactions are encapsulated in 
(5.11) and (5.12) above.  ���= PBg s  is leg 1 of confinement – non-zero charge within the 

baryon.  0=��dG  is leg 2 – no gluon flux through the baryon surface.  ��= MBg s  contains leg 

3 – meson flux does occur.  ��= 2
2

)(
2

)(

J
qq

g
iBg s

s
µν

 contains legs 4 and 5 – the mesons are short 

range because there are no mediating vector bosons binding their individual currents, and 
individual quark flux does not occur because quarks only flow in colorless quark / antiquark 

��������� ==== 2
2

)(
2

)(

2 J
qq

g
iGgiMPBg s

ss
µν

 

( ) 02 =−=−== ��������� BgFGigFdGddG ss  
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current pairs 2J .  Like Maxwell’s equations for electromagnetism, (5.11) and (5.12), at bottom, 
are the underlying equations of nuclear physics.   
 While the development here has discussed five distinct “legs” of confinement, a different, 
but parallel formulation of this problem was posited by Jaffe and Witten for the so-called “mass-
gap” problem.  They state that “for QCD to describe the strong force successfully, it must have at 
the quantum level the following three properties, each of which is dramatically different from the 
behavior of the classical theory: (1) It must have a ‘mass gap;’ . . .  (2) It must have ‘quark 
confinement,’ . . .  (3) It must have ‘chiral symmetry breaking,’ . . .”  They continue: “The first 
point is necessary to explain why the nuclear force is strong but shortranged; the second is 
needed to explain why we never see individual quarks; and the third is needed to account for the 
“current algebra” theory of soft pions that was developed in the 1960s.” [20] 
 “Strong but shortranged” is leg 4.  “Why we never see individual quarks” or gluons are 
legs 2 and 5.  The “theory of soft pions,” more generally, the existence of mesons as the 
mediators of strong interactions, is leg 3.  Not specifically mentioned, but certainly implied, is 
leg 1: the baryon charge enclosed with the baryon surface is non-zero. 
 Before concluding, we make a very preliminary incursion into propagators and masses, 
leaving further detailed exploration for a separate paper.  Contrasting (5.7) with (3.5), it now 

appears as if the meson propagators may be related to 2
)(

2
)( µν qq

igs , which may in turn may relate 

to individual quark masses since there is a square momentum label for each quark current.  Then, 

the term 
�
�

�

�

�
�

�

�
+++=

�
�

�

�

�
�

�

� ++
2

)(
2

)(
2

)(
2

)(
2

)(
2

)(
2

)(
2

)(
2

)(

2
)(

2
)(

2
)( 111

µσσννµσνµ

νµσ

qqqqqq
g

qqq

qqq
g ss , that is, the sum of 

three prospective meson propagators, appears to relate to the baryon propagators, because it 
multiples the underlying baryon structure [ ]qJ ,2  of Figure 1, contrast with (3.7).  On careful, 
further consideration, these may allow a better understanding of the mass relationships among 
baryons, mesons, and quarks. 
 
6.  Protons, Neutrons, Deuterons and Dibaryons, and Weak / Strong Unification 
 
 In briefly talking about specific quarks such as u and d and specific mesons in the last 
section, we were really a bit ahead of ourselves, because we have thus far only justified 
SU(3)QCD.  To talk about specific, observed quarks and mesons, and even about, e.g., protons and 
neutrons, we must also motivate SU(2)W weak isospin.  That is the subject of this section.  
 We have shown how Figures 1 and 2 represent baryons and mesons.  We have shown 
how, after assigning ( )BGRT =ψ  and iiT λ2

1=  to satisfy exclusion, we can use Figures 1 
and 2 and their related equations to describe the strong interactions of quarks within baryons and 
even confinement and the short range QCD properties of mesons.  But, we cannot, yet, talk about 
observed baryons or mesons.  We can only talk about their QCD properties.  Thus, to the next 
question: “How do we go from here, to describing the observed baryons and mesons, say, at least 
the proton and the neutron to start?” 
 This brings us to the doorstep of weak / strong unification, because that which 
distinguishes, e.g., a proton from a neutron or a ±π  from a 0π  has nothing to do with color, and 
everything to do with SU(2)W weak isospin, particularly, the third generator 2

13 ±=I  of SU(2)W.  
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Also of interest is the electric charge 3IYQ += , however, this is not necessary for defining 
exclusive states within a baryon, or for distinguishing mesons, because all quarks have the same 

6
1=Y  and so 3I  will distinguish one baryon or meson from the next as surely as will Q.  In the 

proton, p=uud, two of the quarks have isospin up, and the third has isospin down.  In the neutron, 
n=udd, two of the quarks have isospin down, and the third has isospin up.  The widespread, 
naturally-occurring deuteron = pn, which forms the nucleus of deuterium and is the most-
common dibaryon, and from which the nuclei of more complex, non-isotopic atoms may be 
built, contains a total of six quarks.  If we use �	,  to represent isospin up and down, 
respectively, the deuteron = pn may be thought to contain the six mutually-exclusive fermion 
states, ( ) ( )	���		= BGRBGRpn ,,,,, , for example.  Finally, and the main point of all of 
this, is that SU(3)QCD alone cannot by itself get us from the baryon of Figure 1 to real protons 
and neutrons.  We need, at the very least, the product group SU(3)QCD x SU(2)W (which the 
above discussion of the deuteron roughly represents), and even more preferably, we need to 
understand what unifies the weak and strong interactions. 
 This returns us to the Pauli exclusion principle.  In Section 4, the spacetime configuration 
of a baryon yielded the three distinct component fermions  )(µψ , )(νψ  and )(σψ  in Figure 1.  To 
enforce fermion exclusion, we were led to assign the internal symmetry of SU(3)QCD, via  

( )BGRT =ψ  and iiT λ2
1= , to each of these three fermions.  This use of exclusion as a 

bridge between spacetime and internal symmetry has important pedagogical value for 
approaching other internal symmetries as well.  For example:  If we have been able to arrive 
naturally at three-fermion objects via Maxwell’s equation 2igdGP =  for Yang-Mills magnetic 
sources and then at SU(3)QCD solely through the bridge of exclusion, is there some way to arrive 
at SU(2)W of weak isospin, also, solely through exclusion?  Stated most simply: “can we uncover 
some situation which compels us to introduce SU(2)W to satisfy exclusion, as we did with 
SU(3)QCD?”  And, since SU(3)QCD arose via exclusion, from the spacetime properties of baryons, 
we also ask “is there a spacetime property of baryons which similarly compels SU(2)W?”  The 
motivation here, is that SU(2)W not be introduced ad hoc, but that it be motivated and, indeed, 
required, to enforce some necessary exclusion principle, rooted in spacetime itself. 
 The spacetime origin of SU(3)QCD above, in the end, can be summarized entirely from 
“counting” arguments, based on the third rank antisymmetric σµνP  containing exactly three first 
rank vector bosons µG , νG , σG , see (3.3), and three first rank currents µJ , νJ , σJ , see (3.6), 
with three spacetime indexes, from which we obtained exactly three fermions )(µψ , )(νψ , )(σψ  in 
need of exclusion.  Thus, we ask: “is there a similar counting argument which can be gleaned for 
SU(2)W?” 
 Surprisingly, SU(2)W appears to arise most naturally if we consider the very basic 
features of a string theory.  Consider, for example, a closed string tracing out a world sheet 

( )στµ ,X  in spacetime.  The current associated with this string, , see, e.g., [2], pp. 222,223, is: 
 

[ ] )()(
)4( ),(det)( µν

µν
µν

αα
ν

σ
µ

σ

ν
τ

µ
ταµν ψσψστδστ =−��

�

�
��
�

�

∂∂
∂∂

= � Xx
XX

XX
ddxJ , (6.1) 

where )4(δ  is the Dirac delta in four-dimensional spacetime, and where [ ]µννµµν γγγγσ −= 2
i  is 
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used in recognition that this second-rank, current µνJ  is antisymmetric and so would need to be 
composed out of antisymmetric combinations of the Dirac µγ .  Similarly to how we proceeded 
earlier, we label the fermions with the (in this case, pair of) spacetime indexes )(µν  of the 
associated current.  Most importantly – and in fact the only point that matters for the exposition 
to follow – in such a string theory employing the 2x2 determinant in (6.1), “one” is added to the 
rank of every spacetime object in the associated antisymmetric field theory.  The gauge potential 

µνµ GG 
 , the field strength tensor µνσµν FF 
 , and the magnetic charge (baryon) 
σµντσµν PP 
 , all totally antisymmetric.  Now, using these “plus one rank” objects, let’s count 

some more. 
 The “string baryon” σµντP  would be rank four.  The “string currents” µνJ  would be rank 
two.  Out of the four spacetime indexes in the string baryon, one can the form 6 = C (4,2) 
combinations, ντµτµνστσνσµ ,,,,, .  That is, one can “populate” a “string baryon” with 
exactly six “string currents” for six fermions.  Thus, a “string baryon” so-defined will contain a 
total of six fermions, )()()()()()( ,,,,, ντµτµνστσνσµ ψψψψψψ , labeled in these same index-pair 
combinations.  For exclusion of the fermions in such a six-component baryon, one would choose 
SU(6), and so there would be six different “colors” of fermion.  However, the “string” nature of 
these fermions would only be apparent over very small distances, possibly within a few orders of 
magnitude of the Planck scale.  For everyday observation, this SU(6) symmetry will break down 
into the SU(3) of QCD based on 3 = C (3,1) spacetime index combinations developed above in 
Section 4, but, with a two-fold degeneracy.  This twofold degeneracy has two important 
consequences: 
 First, rather than go from three to six “colors,” we may instead maintain the three colors 
we already have, and label this two-fold degeneracy over SU(3)QCD by two states, say, �	, , and 
call this new symmetry SU(2)W.  That is, SU(6) will break down to SU(3)QCD x SU(2)W when 
going from high to low energies, yielding the precise Yang-Mills internal symmetries observed 
in nature (deferring, until Section 8, discussion of weak parity violation).  Now, SU(2)W has its 
foundation in exclusion, based on the need to provide exclusion for all six fermions in σµντP .  
This exclusion, also, originates in the spacetime properties of the baryons and the currents which 
populate them. 
 Second, the remnants of this degeneracy will appear in the tendency of the six different 
fermions states of SU(6), namely, the ( )���			 BGRBGR ,,,,,  combinations, to cluster into 
two baryons of three fermions each, at low energy.  When the clustering separates out into 
( ) ( )	���		 BGRBGR ,,,,, , one ends up with a deuteron.  This too, precisely accords with 
what is observed in nature, and would explain why non-isotopic nuclei, built up out of deuteron 
pairs, are very predominant in nature.  In this light, the fourth rank Yang-Mills magnetic object 

σµντP  is best thought of, not as a “string baryon,” but rather, as a dibaryon σµντP , of which the 
deuteron is the most common special case.  At low energies, the six exclusive states of 
( )���			 BGRBGR ,,,,, , split into various combinations of two three-fermion baryons 
each.  Non-isotopic nuclei are then built up out of a plurality of σµντP , but at low energies, are 
witnessed predominantly as dibaryons, e.g., deuterons consisting of two baryons σµνP  (see, e.g., 
[21], [22], [23] which consider six-quark bags and dibaryons.)  In this way, the existence of 
deuterons = pn = 3 quarks x 2 baryons throughout the nuclear world, as well as other dibaryons, 
is also seen to directly mirror the low energy Yang-Mills phenomenology SU(3)QCD x SU(2)W.  
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All of this, may provide a unified basis for strong and weak interactions. 
 If we use 
  to designate the high-to-low energy transition from σµντP  to σµνP , and µνJ  
to µJ , together with the associated internal symmetries, then we may summarize the above 
discussion by writing: 
 

( ) ( ) deuterongedibaryonbaryonJPSUSUJPSU WQCD .,.,2,)2()3(,)6( =×=×
 µσµνµνσµντ . (6.2) 

Now that we have a basis for SU(2)W based on exclusion, we can introduce the iI , 3,2,1=i  of 
the weak interaction operating on fermion wavefunctions ( )�	=Tψ , and with this, we have a 
foundation upon which to discuss specific baryons such as the proton and neutron, specific 
mesons such as the ±ππ ,0 , and even specific dibaryons such as the deuteron. 
 Having gone from Yang-Mills magnetic charges to strong baryons and mesons and 
SU(3)QCD, and then on to protons and neutrons and deuterons pions and SU(3)QCD x SU(2)W 
using the pedagogical bridge of exclusion, let us now ask the next question: what about atoms 
themselves?  Is there some way based on similar “counting” arguments and exclusion principles, 
to progress forward to represent an entire atom, at least for the simplest atoms?  Put in 
pedagogical context: “What is the exclusion principle, based on the spacetime properties of 
baryons, which forces atoms into existence?”  This involves yet another important step, because 
in asking about atoms, we need electrons as well as quarks, and so, are now asking about the 
quark / lepton relationship. 
 The other question which arises, is whether there is an explanation for fermion generation 
replication to be obtained from the pedagogical approach of extracting internal symmetries from 
the spacetime properties of baryons via the bridge of exclusion.  That is, if this pedagogy holds, 
then it should also be possible to extract quantum numbers such as C and S for the charmed and 
strange quarks, as an example, from the spacetime properties of “regular,” as well as “plus one 
rank,” baryons and currents. 
 
7.  Lepto-Quark Unification, Foundations of Atomic Structure, and Superconductivity 
 
 In the prior section, we assumed that there is a simultaneous transition from σµντP  to 

σµνP , and from µνJ  to µJ .  Let us relax this assumption, and ask what would happen – based 
again on spacetime index counting alone – if we were to populate a fourth rank string baryon 

σµντP , with ordinary, first rank currents µJ .  Similarly, we ask, what would happen if we were 
to populate an ordinary third rank σµνP , with a second rank string currents µνJ .  That is, we 
examine how many fermions arise from each of the combinations ( )µσµν JP , , ( )µνσµντ JP , , 

( )µσµντ JP , , and ( )µνσµν JP , , where ( )JP,  generally means “populate baryon P with currents J 

and then apply exclusion.”  The ( )µσµν JP ,  combination was the focus of the discussion in 
sections 4 and 5, and led via exclusion to SU(3)QCD, confinement, and short-range mesons.  The 
( )µνσµντ JP ,  combination was examined in section 6 as summarized in (6.2), and led via 
exclusion to SU(6) ⊃  SU(3)QCD x SU(2)W and a possible understanding of why deuterons are 
such a fundamental nuclear building block, effectively mirroring SU(3)QCD x SU(2)W.  We shall 
now show how ( )µσµντ JP ,  leads to leptons and atoms, and ( )µνσµν JP ,  to generation replication. 

 The ( )µσµντ JP ,  combination, that is, fourth rank σµντP  populated with first rank µJ , 
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would contain 4 = C(4,1) distinct currents based on spacetime indexes, and hence, four fermions 

)(µψ , )(νψ , )(σψ , )(τψ  in need of exclusion.  The Yang-Mills group of choice is now SU(4).  

Because we want this SU(4) to break down to SU(3)QCD upon the σµντP  to σµνP  transition, we 
retain the three colors R, G, B already in place for SU(3)QCD.  That is, we establish SU(4) such 
that SU(4) ⊃ SU(3)QCD.  With SU(4), comes an additional diagonal generator 15

2
115 λ=T , which, 

like the other iλ  for SU(3)QCD, is to be normalized such that ( ) 2
215 =λTr .  If we then assign 

( ) 153/6 λ=− LB  where B is baryon number and L is lepton number, then we may designate this 
fourth “color” of fermion as L, and establish the SU(4)lepto-quark wavefunction 

( )BGRLT =ψ  (see, e.g., [24], section 12.2).  This fourth rank σµντP , but with first rank 

currents µJ , now contains four fermions, three of which are quarks, and one of which is a 
lepton.  When this σµντP  with µJ  breaks down to σµνP  with µJ , the three quarks will cluster 
into a single baryon, while the lepton manifest separately.  The resulting symmetry is now 
SU(3)QCD + U(1)lepton.  Similarly to the deuteron discussion earlier, we then should also come to 
expect that we will observe natural systems consisting of one baryon and one lepton.  That is, if 

( )µνσµντ JPSU ,)6(  is the natural “template” for a deuteron, then ( )µσµντ JPSU ,)4(  is the natural 
“template” for an atom.  To summarize: 
  

( ) ( ) atomleptonbaryonJPUSUJPSU leptonQCDquarklepto =+=+
−
µσµνµσµντ ,)1()3(,)4( . (7.2) 

There is a wealth of evidence that this phenomenology is also fully in accordance with nature.  
When we observe atoms, we are observing the low-energy manifestation of ( )µσµντ JPSU ,)4( . 
 Finally, if a fourth rank baryon σµντP  may contain three quarks and a lepton without the 
lepton being separate from the remaining quarks, one may be able to explain the underlying 
nuclear mechanism for superconductivity.  For a non-superconducting material, one encounters 
resistance, presumably, because electrons traveling through that material cannot go “through” the 
nucleons of that material, but must go “around” the nucleons and so encounter “friction,” i.e., 
resistance, by virtue of numerous “collisions” with the nucleons.  Now, suppose we “cool” the 
material below a threshold temperature TC such that the electrons then travel without resistance, 
which is, in a word, superconductivity.  If this cooling were to restore ( )µσµντ JPSU quarklepto ,)4( −  

from ( )µσµν JPUSU leptonQCD ,)1()3( + , then the electron, being just another quark in a four-
fermion nucleon, would become part of the nucleon, and not be separate therefrom.  Differently 
put, an atom becomes a plurality of four-fermion baryons.  Collisions would be eliminated, and 
the current would then flow without resistance.  Thus, if we regard (7.2) as describing a 
transition which takes place as one goes supplies heat, that is, if we regard quarkleptoSU −)4(  as a 
low-temperature symmetry, then (7.2) might possibly be considered as the underlying nuclear 
mechanism for superconductivity, as well as a possible connection with thermodynamics. 
 This becomes especially interesting in light of the fact that only mesons – not individual 
fermions – can travel through a confinement surface, as developed in section 5.  Thus, once an 
electron becomes a fourth color of quark at low temperature, then even if it can coexist with 
quarks inside of a single four-fermion baryon, the electrons would still have to form leptonic 
“mesons,” −+ee , that is, electron / positron pairs, in order to flow through the confinement 
surface.  Thus, one would expect electron “pairing,” as well as the presence of positron “holes,” 
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to be an essential signature of a superconducting current flow.  Intriguingly, Cooper pairing [25], 
and Dirac holes [26], have long been part of superconducting theory at the electronic level.  
Finally, for an quarkleptoSU −)4(  “baryon atom,” there is also nothing to prevent current flows of 
quark / antiquark pairs and even mixed quark / positron and electron / antiquark pairs.  
Therefore, one would expect to observe fractional current flows with electrical charges of 3

1±  or 

3
2±  as well as 1± .  This could underlie the fractional quantum Hall effect. [27] 

 
8. The Generation Mystery, Fermion Phenomenology, and Electric Charge Generator  
 
 Now, let’s turn to ( )µνσµν JP , , i.e., a regular third rank baryon σµνP  populated with 

second rank string currents µνJ .  Here, we have 3=C(3,2) index combinations, and so three 
distinct currents and fermions.  The fermions are: )(σµψ , )(σνψ , )(µνψ  in contrast to the  )(µψ , 

)(νψ , )(σψ  of section 4 for which 3=C(3,1).  We again force exclusion, but not the same R, G, B 
exclusion of SU(3)QCD.  We need to find a different “3.”  The one other piece of particle 
phenomenology not yet addressed is generation replication.  We do observe three generations.  
And, here, we have an additional SU(3) symmetry in need of a phenomenological association.  
Let us therefore, enforce exclusion by assigning these )(σµψ , )(σνψ , )(µνψ  fermions to the states 

τµ,,e , and regard this as an SU(3)GEN symmetry of generation replication.  Again, we have 
applied the pedagogical method of using exclusion to bridge spacetime and internal symmetries. 
 If we do this, we can now summarize the various ways of “populating” a baryon, and 
their associated internal symmetries, using exclusion and “counting,” as follows: 
 
For the baryons: 
 

( ) ( )BGRJP QCD

exclusion

,,3,,, )()()( =

 σνµ
µσµν ψψψ ; (8.1) 

For the dibaryons: 

( ) ( ) ( )�	×=×=

 ,,,236,,,,,, )()()()()()( BGRJP
exclusion

ντµτµνστσνσµ
µνσµντ ψψψψψψ ; (8.2) 

For the atoms: 

( ) ( )BGRLJP
exclusion

,,,4,,,, )()()()( =

 τσνµ
µσµντ ψψψψ ; (8.3) 

For the generations: 

( ) ( )τµψψψ µνσνσµ
µνσµν ,,3,,, )()()( eJP GEN

exclusion

=

 ; (8.4) 

With this, we can take the “counting” argument even a step further, and arrive at the complete 
phenomenology of the elementary fermions, in the following way: 
 In a four dimensional spacetime, 4! = 4x3x2x1 = 24 describes the number of 
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permutations by which the indexes of a fourth rank tensor can be reordered.  We have seen that 
all of these factors, 4, 3, 2, show up by the various combinatorial arguments that led to (8.1) 
through (8.4).  In general, C(M,N)=M!/(M-N)!N!.  Let us now associate the pure numbers 4, 3, 
and 2 from 4! with ( )BGRL ,,,4 = , ( )τµ,,3 e= , and ( )�	= ,2 , noting the origin of each of these 

numbers in (8.1) through (8.4).  We then use ( ) ( )�	××=××= ,),,(,,,23424 τµeBGRL  to form 
exactly 24 particles.  These are summarized in Figure 2 below: 
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Figure 3 

 
 We do, in fact, find exactly 24 distinct elementary fermion in nature.  It is now seen as 
more than just happenstance, that 24 = 4! = 4x3x2x1 is so closely associated with the properties 
of antisymmetric tensors in 4-dimensional spacetime and that there are 24 known fermions 
which in fact group themselves into the 4x3x2 configuration of Figure 3.  Rather, the existence 
of exactly 24 elementary fermions It is motivated by the fundamental numeric fact that the 
number 24 = 4! naturally emerges from antisymmetric field theory in a four-dimensional 
spacetime, and the various ways in which baryons can be populated with lower-rank currents.  
The internal symmetries of the elementary fermions, thus have a direct and fundamental 
connection to the symmetry of spacetime in antisymmetric field theory, via the pedagogical use 
of Pauli exclusion as a bridge between spacetime and internal symmetries. 
 At this point, the only internal symmetry left unexplained is the electric charge 

LIYQ 3+= .  Volovok points out in [24] Section 12.2.2, that once ( ) 153/6 λ=− LB  is 
established, see the previous discussion preceding (7.2), that the weak hypercharge generator Y, 
can be established with a weak right-handed SU(2)R group ( ) RILBY 3

2
1 +−= , and therefore, the 

electric charge generator is ( ) LR IILBQ 33
2
1 ++−= .  In this circumstance, to get to Q, and 

hence to the phenomenological SU(3)QCD x SU(2)L x U(1)Y, one needs to introduce the SU(2)W 
degeneracy discussed in Section 6 as a left-right symmetric internal symmetry, and then uncover 
how to break this chiral symmetry at low energies so that only SU(2)L is observed.  We leave the 
question of chiral symmetry breaking for a separate undertaking. 
 
9.  Baryon Wavefunctions 
 
 Finally, returning to the regular baryon µνσP , one may ask, “how might the wavefunction 
for a baryon be related to the baryon source density µνσP ?”  Given that ( )ψγψ µµ

i
i TTJ = , see 

(3.5), relates the Dirac wavefunction ψ  for a fermion to the first-rank current source density µJ , 
one may try to construct a similar expression relating a baryon wavefunction Ψ  to the third-rank 
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baryon source density µνσP .  Because µνσP  is fully antisymmetric, we will need, however, 
rather than the Dirac µγ , to employ totally-antisymmetric, third rank combinations of the Dirac 

µγ .  First, recognizing that 32105 γγγγγ i= , and so using a fifth-rank, totally antisymmetric Levi-
Civita tensor µνστλε  with 101235 =ε , we define the “dual” µνσσ*  of the usual antisymmetric 
object [ ]τλλττλ γγγγσ −= 2

i  according to: 
 

[ ]τλλτ
µνστλ

τλ
µνστλµνσ γγγγεσεσ −=≡ 4!2

1* i . (9.1) 

The µνσσ* , so-defined, are totally antisymmetric in all three spacetime indexes.  Then, we may 
define Ψ  from µνσP , analogously to ( )ψγψ µµ

i
i TTJ = , according to: 

 
( ) µνσµνσσ PTT i

i ≡ΨΨ * . (9.2) 

For σνµ ,,  ranging only over the spacetime indexes 0,1,2,3, it is clear from (9.1) and 
32105 γγγγγ i=  that µνσσ*  will always lead to an axial vector, containing the commutator of a 

Dirac matrix 5γ  with a µγ  such that 5≠µ .  For example, [ ] 3535532
012* σγγγγσ ii =−= .  The 

above discussion in this paragraph illustrates a possible approach for development of baryon 
wavefunctions.  Definitive calculation, beyond the scope of this paper, will be needed to confirm 
whether these constructions are physically correct, and in accordance with known understandings 
of baryon wavefunctions. 
 
10.  Conclusion 
 
 As a result of the foregoing, we conclude that the baryons may well be Yang-Mills 
magnetic sources, described most simply and compactly in equation (4.2), and represented in the 
Feynman diagram of Figure 1.  The color group SU(3)QCD emerges naturally from the spacetime 
symmetries of the baryon, by demanding quantum exclusion for the three fermions within a 
baryon.  Quark and gluon confinement, and the existence of short-range mesons mediating 
strong nuclear interactions, naturally emerge from this analysis.  When we consider the 
possibility of strings, quantum exclusion appears to lead also to the SU(2)W symmetry of weak 
interactions, and to an understanding of why baryons may cluster into deuteron pairs.  Further 
consideration leads as well to a possible understanding of the relation between quarks and 
leptons, and the origins of atoms, as well as the fundamental phenomenology of 24 elementary 
fermion flavors, in a 24 = 4! = 4x3x2 = D! grouping, in a D=4 dimensional spacetime.  An irony 
is that string theory, often criticized for being unable to predict any experimental results, appears 
here, together with a careful analysis of magnetic sources in Yang-Mills field theory and the 
pedagogical application of exclusion, to lay the foundation for explaining a wide range of 
phenomenology, including the observed strong / weak /electromagnetic SU(3)QCD x SU(2)W x 
U(1)Y interaction phenomenology, nuclear and atomic structure, and the observed pattern of 
elementary fermions including generation replication. 
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