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Yang-Mill Foundations of Baryons and Confinement Phenomena 

Jay R. Yablon – 4/5/09 DRAFT 

1.  Introduction 

To be added. 

 

2.  A Brief Review of Classical Electromagnetism and Differential Forms  

 In classical field theory, the Euler Lagrange equations of motion 

( )
0=−

∂
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δ

ϕδ

δ

µ

µ

LL
 (2.1) 

for a given field ϕ  arise by applying a variational principle 04 =∫= LxdS δδ  to the action S.  In 

the case of the Maxwell Lagrangian density: 

µ
µµν

µν
JeAFF +−=

4
1L , (2.2) 

where: 

][ νµµννµµν
AAAF ∂≡∂−∂=  (2.3) 

is the field strength tensor, νA  is the vector potential, µ
J  is the electric current density and e is 

the electric charge strength.  Applying (2.1) to (2.2) using (2.3) yields Maxwell’s classical 

equation for electric charge: 

µν
µ

ν
FeJ ∂= . (2.4) 

 If we employ the “dual” field strength tensor αβ
µναβµν ε FF

!2
1* ≡  where µναβε  is the 

totally-antisymmetric contravariant Levi-Civita tensor, then the Faraday Lagrangian density: 

µν
µν

FF *
4
1−=L  (2.5) 

will, on application of (2.2), yield: 

( )νµν
µ µPF ≡=∂ 0* , (2.6) 

which is Faraday’s classical equation for a  magnetic current density defined above as νP  with 

magnetic charge µ .  By being equal to zero, such “magnetic monopoles” are thought not to 

exist, and have never been observed to exist.  By Dirac’s quantization condition, cne hπµ 2=⋅ . 

 The language of differential forms, employed in exterior calculus, is especially 

convenient not only for representing the Maxwell and Faraday equations very concisely without 

any loss of mathematical rigor, but are also ideally suited for mathematical integration over 



2 

 

closed loops, surfaces and volumes.  In this language, (2.3), (2.4) and (2.6) are equivalently 

represented as: 

dAF = , (2.7) 

dAdFdJe *** == , (2.8) 

( )PddAdF µ≡== 0 .
*
 (2.9) 

The latter includes a fundamental identity of exterior calculus, 0=dd : “the exterior derivative 

of an exterior derivative is zero.”
 

 
Stokes’ / Gauss’ theorem states that for any closed d-dimensional loop / surface / volume: 

 

∫∫ −
=

1dd
HdH  (2.10) 

for any p-form H.  Thus, the classical Maxwell / Faraday equations (2.8), (2.9) are readily 

written in integral form, using (2.10), as: 

∫∫∫∫∫∫∫ == dAFJe *** , (2.11) 

0==== ∫∫∫∫∫∫∫∫ AdAFPµ . (2.12) 

This is the spacetime-covariant formulation of Maxwell’s equations in integral form.  Now, let us 

turn to quantum theory. 

 

3.  Maxwell’s and Faraday’s Forms and their Surface Integrals, In Quantum Theory 

 In the Heisenberg picture of quantum theory, the equation of motion, with respect to an 

operator observable O, is given by: 

[ ] OOH
i

Od
00 , ∂+=

h
, (3.1) 

where H is the Hamiltonian and the commutator [ ] OHHOOH −=, .  By Ehrenfest’s theorem, 

designating the expectation value of an operator O as ϕφ OO = , the time derivative of O  

is related to the expectation value O0∂  via the similar form:
 

[ ] OOH
i

Od
00 , ∂+=

h
. (3.2) 

                                                           

*
 In the foregoing, 

µ
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1 , and the differential operator d as applied to any p-form H is 
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1 ∂= .  Generally it is most convenient to employ forms without wedge products. 
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Of particular interest here, this means that the Euler-Lagrange equation (2.1) no longer applies in 

quantum theory, but does remain valid as an expectation value equation, thus: 

( )
0=−

∂
∂

ϕδ

δ

ϕδ

δ

µ

µ

LL
. (3.3) 

In quantum theory, the differential forms A, F, J, P, are no longer scalars, but become 

operators.  The scalars associated with these operators, are now their expectation values 

ϕφ AA = , ϕφ FF = , ϕφ JJ = , and ϕφ PP = .  Further, for any operator, 

dOdOOdOd === ϕφϕφ , and, as a general rule BABA +=+ .  So,
 
Maxwell / 

Faraday equations (2.8), (2.9) continue to apply in quantum theory, in the “weaker” form: 

dAdFddAdFdJe ***** ==== , (3.4) 

0====== AdddAdFdddAdFPµ . (3.5) 

It is interesting to note that in quantum theory, the rule 0=dd  that “the exterior 

derivative of an exterior derivative is zero” continues to apply.  However, the scalars to which 

0=dd  is now applied, are not classical scalars, but the expectation values of these classical 

scalars after they become quantum mechanical operators.  Equation (3.5), written as 0op =Pµ , 

tells us that the expectation value of the magnetic charge operator is zero, but that this operator 

can assume a range of non-zero values, 0op ≠Pµ .  One may be tempted, but would be incorrect, 

to conclude from this that there might be quantum statistical fluctuations about the expected 

value by which one could observe a magnetic charge, 0obs ≠Pµ , because one cannot conclude 

from the value of 0op ≠P , anything definite about obsP .
 

 In quantum theory, Stokes’ / Gauss’ theorem is not altered.  So long as one can satisfy its 

underlying formal hypotheses, it must apply.  Thus, in integral form, keeping in mind that A, F, 

J, P, are all operators, the scalar equations (3.4) and (3.5) become: 

∫∫∫∫∫∫∫ == dAFJe *** , (3.6) 

0==== ∫∫∫∫∫∫∫∫ AdAFPµ . (3.7) 

 When we make use of the integral form, it is possible to make better statements about 

what is observed, in particular, because the total observable )3(obsO  contained within a given 
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volume is specified by ∫∫∫= xdOO 3

op)3(obs  over that volume, in relation to the associated 

operator opO .  So for example, we use ανµ

µνα

ανµ

µνα
dxdxdxJedxdxdxJeJe opopop *** ==

to expand in (3.6), where ανµ dxdxdx  can be removed from the expectation brackets because this 

is a volume element specified with respect to a system of spacetime coordinates and so does not 

have an “expectation.”  Thus, ανµ

µνα
dxdxdxJeJe ∫∫∫∫∫∫ = opop ** .  Transformed into an “at 

rest” frame, one can show that ∫∫∫∫∫∫ =≡ xdeJeQ 3

op0op)3(obs * ρ  is the total charge observed 

within this 3-dimensional volume.
*
   

By similar rationale, the total observable )2(obsO  contained over a given surface area is 

specified by ∫∫= xdOO 2

op)2(obs  over that area, in relation to opO .  Thus, again in a rest frame, 

one can show that dAEE ⋅== ∫∫∫∫ opop)2(obs * F  is the total electric field observed to flow 

across the two-dimensional volume which contains the charge )3(obsQ .
**

  Thus, transformed to a 

rest frame, (3.6), ∫∫∫∫∫ = FJe ** , recovers the classical result ∫∫ ⋅= dAEQ . 

 Similarly, at rest in the Faraday equation (3.7), ∫∫∫≡ op)3(obs PM µ  is the total magnetic 

charge observed within a 3-dimensional volume, ∫∫= op)2(obs FB  is the total magnetic field 

observed to flow across the two-dimensional volume which contains the magnetic charge, and 

these both, in turn, remain equal to zero.  Thus, despite initial contrary appearances, we recover 

the classical result that magnetic charges do not exist in nature, 0=⋅= ∫∫ dABM .  One then 

arrives at the balance of classical electromagnetism, by the Lorentz transformation of the 

foregoing. 

 

                                                           
*
 In explicit form, the current density operator 

ναβ
µναβµ ε op!3

1
op * JJ = .   Represent the components of this as 

( )opopop ,Jρ
µ

=J .  Transform to the rest frame, so that ( )0,op0op ρ
µ

=J , where 
op0ρ  is the proper charge density 

operator.  Then, 
op0123op* ρ=J , and 0*** 012op301op230op === JJJ , in all permutations, since µνα

op* J  is totally 

antisymmetric.  Index permutations are already accounted for, via ανµ
µνα

ανµ
µνα

dxdxdxJdxdxdxJJ =∧∧=
!3

1  .  

 
**

 Here, keep in mind that 
αβ

µναβµν ε FF
!2

1* ≡  and 
νµ

µν
νµ

µν
dxdxFdxdxFF =∧≡

!2

1 .  Because duality effectuates BE →  

and EB −→  transformations, the components of interest are now 
zEF =12

* , 
xEF =23* , and 

yEF =31
* .  
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4.  Yang-Mills Gauge Theory, Cast in the Manner of the Maxwell and Faraday Equations 

 In Yang-Mills gauge theory, the vector potential is denoted by 
µ

G  rather than by µA , 

and its associated differential form is µ
µ
dxGG ≡ .  However, 

µ
G  is in general a non-commuting 

object, [ ] 0, ≠νµ
GG , because it, in turn, is specified by 

µµ
i

i
GTG ≡ , where iT  are the traceless, 

Hermitian, NN ×  group generators for the associated gauge group SU(N).  The group structure 

is specified by [ ]kj

i

ijk
TTiTf ,−=  and the Latin internal symmetry index 13,2,1 2 −= Ni K  is 

raised and lowered with the unit matrix ijδ .  The differential from associated with the non-

commuting [ ] 0, ≠νµ
GG  is represented by: 

[ ] [ ] νµ
νµ

νµ
νµ

dxdxGGdxdxGGGGG ,,
!2

12 =∧=∧≡ , (4.1) 

and to ensure the gauge invariance of any such theory, it is necessary for the Yang-Mills field 

strength two-form to be given by: 

2
igGdGF += ,

*
 (4.2) 

where g is the charge strength of the Yang-Mills group.  Contrasting with dAF =  from (1.2), we 

see that the only real difference between Yang-Mill theory and U(1) electromagnetic theory, 

whether classical or quantum, is the existence of this extra term 
2

G  in the field strength.  Aside 

from the existence of this extra, non-linear 
2

G  term in (4.2), the development of Yang-Mills 

theory can proceed in an identical fashion to that of electromagnetic theory. 

 First, in the same way that one can think about electromagnetism in the classical sense of 

section 2 and then in the quantum sense of section 3 with expectation values, one can make a 

similar sharp distinction between “classical Yang-Mills theory” and “quantum Yang-Mills 

theory.”  This is not usually done, likely because of the historical accident that classical 

electromagnetism was known before quantum theory, and the reversed historical accident that 

quantum theory had undergone substantial development before Yang-Mills theory became 

known.  Nonetheless, it is a useful heuristic tool, if one is thinking for instance about strong 

interactions, to think not only about “quantum chromo dynamics” (QCD), but also about 

“classical chromo dynamics,” which is what strong interaction theory might have first been, had 

                                                           
*
 By way of review,  Equation (4.2) can thus be expanded using the foregoing group relationships to the NN ×  

equation [ ]νµµννµµν
GGigGGF ,+∂−∂= , and, with all components explicit, to the commonly-written, most 

familiar νµµννµµν
kj

ijkiii
GGgfGGF −∂−∂= .  In most instances, it is easiest to retain the compacted form (4.2). 
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Yang-Mills theory also undergone the same historical accident as electromagnetic theory, of 

coming before quantum theory.  In the discussion here, we will frequently use the prefix 

“chromo” to broadly refer to Yang-Mills theory in general, rather than in the narrower sense of 

only the particular color group SU(3). 

 Now, in Yang-Mills theory, classical or quantum, the Lagrangian density which 

corresponds to (2.2), is simply: 

µ
µµν

µν

i

ii

i JgGFF +−=
4
1L , (4.3) 

or, with the normalization ( )j

i
j

i
TTTr2=δ  and the internal symmetry indexes suppressed: 

( ) ( )µ
µµν

µν
JGgFF Tr2Tr

2
1 +−=L . (4.4) 

Thus, thinking in terms of classical Yang-Mill theory, and compressing some of the detailed 

stapes taken in section 2, we may use (4.2) to write the “classical” Yang-Mills equation of 

motion: 

( )2**** GgiddGdFdJg +== , (4.5) 

( ) ( ) 022 ≠=+== gGidgGidddGdFPµ , (4.6) 

where, in the latter equation, we have continued to apply the exterior calculus relationship: 

0=ddG . (4.7) 

 To go over to quantum Yang-Mills theory, G, F, J, P once again become operators, and 

merely take the expectation values of these operators as in section (3), to arrive at: 

( ) 22 ******* GgiddGdFdGgdidGdFdJg +==+== , (4.8) 

( ) 022 ≠==== gGidFdgGdidFPµ , (4.9) 

0=== GdddGdddG . (4.10) 

These should be contrasted to (3.4) and (3.5). 

 Then, we apply Stokes’ / Gauss’ theorem, as before, to establish the integral forms of 

these three equations, while simultaneously moving the expectation brackets outside the integrals 

as discussed previously, to arrive at: 

∫∫∫∫∫∫∫∫∫ +== 2**** GgidGFJg , (4.11) 

02 ≠== ∫∫∫∫∫∫∫ gGiFPµ , (4.12) 



7 

 

0=== ∫∫∫∫∫∫ GdGddG . (4.13) 

These three equations should be carefully compared with their two quantum electromagnetic 

counterparts (3.8), (3.9), for these are the Yang-Mill analogs of the “expectationized” Maxwell-

Faraday equations in integral form. 

  With these equations, our preliminary development is complete.  From this point forward, 

we shall devote our attentions to trying to interpret what equations (4.8) through (4.13) tell us 

about the character of any system of currents and fields and potentials which might be governed 

by these equations, and to engaging in further calculation based on one or more of these 

equations, where warranted, to help us better understand and interpret these equations. 

 

5.  Chromo-Electric Charge and Current Confinement 

 Let first examine equation (4.8), in contrast with its electromagnetic counterpart (3.4).  

Each of these equations contains an “electric” source current density J .  In electromagnetic 

theory, the expectation value of the potentials for which the current expectation vanishes, 

0=J , is specified by the second order linear differential equation 0* =dAd .  In tensor form, 

the equivalent equation is 0=∂∂ νσ
σ A , and this is a comparatively simple differential 

equation. 

In Yang-Mills theory, this is different.  Here, the expectation values of the potentials for 

which the chromo-electric current expectation value vanishes, 0=J , is arrived at from (4.8), 

and is specified by: 

( ) ( ) 0***** 222 =++=+ GdgiGdgidGdGgiddGd . (5.1) 

Here, given the asymptotic freedom and infrared slavery known to subsist in QCD, we work 

from the supposition that 0≠dg .  If g and G are uncorrelated, i.e., if they have separate 

probability distribution functions, the one can use 22 ** GgGg =  to separate the nonlinear 

term above, but one ought not assume this to be the case.  That is, one must consider the 

possibility that the interaction charge and the potentials will correlate in some fashion, unless and 

until it is shown otherwise. 

 Equation (5.1) is a highly nontrivial differential equation with all of zero, first and second 

order terms in the potential G, and to boot, it also contains terms which are linear and of first 
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order in the charge strength g, and to further boot, one has to consider that g and G may be 

probabilistically correlated. 

 Yet, we know from electrodynamics that potentials are often formulated as a function of 

spatial distance (r), and that in QCD, one frequently attempts to understand confinement in 

confinement in terms of an effective potential which, similarly, once would also like to cast as a 

function of both space (r) and time (t).  Equation (5.1) implicitly establishes a non-trivial 

differential equation for the 12 −N  potentials 
ν

iG  of 
νν

i

i
GTG = , and, what is most 

important, the potentials which are specified by (5.1), are the potentials for which the current 

expectation vanishes.  In terms of space and time, once (5.1) is solved for 
ν

iG  and the spatial 

distribution  ( )x,tGi

ν
 is either know or postulated, (5.1) then establishes those events in 

spacetime at which the there is no expected chromo-electric charge density (
0

J ) and at which 

there is no expected chromo-electric current density (
k

J ).  Where solutions to (5.1) may turn out 

to describe a closed surface, such a 0=J  “expected surface,” by definition will exhibit the 

properties of a surface within which the chromo-electric charges and currents are expected to be 

confined, because, by definition, there can neither be any charge density at, nor any charge 

density flowing across, this surface. 

 Thus, one may regard (5.1) as a differential equation which can be used to identify what 

are, by definition, effective expected confinement potentials and surfaces. 

 

6. 


