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Abstract:  

By giving careful attention to the formation of propagators in Yang Mills groups, 

particularly by understanding the term 2
mpp −σ

σ not as a propagator denominator but 

rather as a matrix of internal symmetries the inverse of which multiplies the propagator 

spin sum, we carefully construct the matrix inverse ( ) 12 −
− mpp σ

σ  in SU(2) as a “warm up” 

exercise, and then in SU(3).  This includes a generalized approach to spontaneously break 

symmetry in Yang-Mills groups SU(N) with N>2.  We then develop the framework for 

systematically characterizing the observed meson masses and lifetimes of QCD, while 

naturally overcoming the plague of infinite propagator poles without resort to any special 

measures. 
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1.  Introduction 

 The purpose of this paper is to develop an approach by which the massiveness, and the 

mass spectrum, of the massive vector mesons of QCD might be understood.  That is, we seek to 

understand as simply as possible, the origin of experimentally-observed QCD vector meson 

masses such as can be found, for example, in the PDG table at [1].  Finding out how the vector 

mesons of QCD obtain their non-zero masses which make the strong QCD interaction short 

range despite its supposedly-massless gluons, is one aspect of the so-called “mass gap” problem, 

see [2] at page 3. 

 We start by reviewing how gauge boson mass is known to be generated in SU(2), as a 

template for considering SU(3) QCD.  Since the SU(2) approach shown through equations (2.4) 

below is a well-known “warm-up” for developing SU(2)xU(1) electroweak interactions, we shall 

not discuss electroweak theory per se.  Rather, we shall review how massive vector particles 

obtain mass in SU(2) via spontaneous symmetry breaking, and then seek to extend this to SU(3). 

 

2.  A Warm Up Exercise: Spontaneous Symmetry Breaking and Propagator Development 

in SU(2), and Non-Abelian Fourier Transforms 

 For the development throughout, we shall use the following Lagrangian density: 

( )( ) ( ) ( )
( ) ( ) K

K

+−++∂∂−∂∂=

+−++∂∂−∂∂=

ϕϕϕϕ

ϕϕϕϕ

µ
µσ

σ
ν

µν
σ

σµν
µ

µ
µσ

σ
ν

µν
σ

σµν
µ

††2

2
1

††2 Tr2Tr

VJgGGGgGgG

VJGgGGgGgG

i

i

i

i

L
. (2.1) 

Above, 
µµ

i

iGTG ≡  and 
µµ

i

i JTJ ≡  are Hermitian NN ×  matrices for )(NSU , g is the group 

coupling, and ϕ  is a scalar with N complex components and 2N degrees of freedom.  We also 

apply the normalization ( )j

i
j

i
TTTr2=δ , which accounts for the factor of ½ between the top and 

bottom lines above.  The reader will recognize that this is only part of the standard model 

Lagrangian.  We have omitted terms, including those of higher than second order in µ
G  and ϕ , 

which are not needed for this development below.  The above L  may be applied to any non-

Abelian, Yang Mills group SU(N). 

Now, we turn specifically to SU(2), and focus on the term ϕϕ σ
σ
GGg

†2 .  We first define 

the scalar field in the usual manner: 
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








+

+
=

43

21

2

1

ϕϕ

ϕϕ
ϕ

i

i
. (2.2) 

This contains 4(=2N) scalar degrees of freedom.  Taking ( ) ( ) ( ) K++≡
2††2† ϕϕλϕϕµϕϕV  as 

usual, we find the stationary points via ( ) 02/ †2† =+=∂ ϕϕϕλϕµϕdV  to define a non-trivial 

minimum at ( ) 2

2
12

0

†
2/ v≡−= λµϕϕ ,

*
 where the 0  subscript specifies that this is the stationary 

point.  Then we break the symmetry of ( ) ( ) 2

2
12

4

2

3

2

2

2

12
1

0

† v=+++= ϕϕϕϕϕϕ  by choosing  

νϕ =3  and 0421 === ϕϕϕ .  Thus, showing a full expanded matrix calculation as a prelude to 

examining SU(3), and using the familiar Pauli spin matrices ii T2=σ  of ( )3O  rotations, we find: 

( )

( ) ( )σ
σ

σ
σ

σ

σ

σ

σ

σ

σ

σσσ

σσσ

σσσ

σσσ

σ

σ

σ

σ

σ
σ ϕσσϕϕϕϕϕ

GGMGGMGGGGGGgv

vGiGG

iGGG

GiGG

iGGG
v

GGgGTGTgGGg

i

i

j

j

i

i

j

j

i

i

Tr

0
0

22

2
1

332211

22

8
1

321

213

321

213

8
1

†2

4
1†2†2

==++=


















−+

−












−+

−
=

==

, (2.3) 

with vgMMMM
2
1

)3()2()1( ====  “revealed” to be the masses of three gauge bosons 
σ

iG . 

 At this point, we insert the results from (2.3) back into (2.1) to obtain: 

( )( )( ) ( ) ( )
( )( ) ( ) K

K

+−+∂∂−+∂∂=

+−+∂∂−+∂∂=

ϕϕ

ϕϕ

µ
µν

µν
σ

σµν
µ

µ
µν

µν
σ

σµν
µ

†2

2
1

†2 Tr2Tr

VJgGGMgG

VJGgGMgG

i

i

i

i

L
, (2.4) 

which takes the term µν
σ

σµν ∂∂−∂∂g  and turns it into the Proca term ( ) µν
σ

σµν ∂∂−+∂∂ 2
Mg  for 

a massive particle.  All of this is standard, known development.  Now, we engage in a further 

exercise which is unnecessary overkill for SU(2), but which will be vital in considering SU(3). 

It is known that the propagator ( )σ
νλ pD  will be specified in momentum space, following 

a Fourier transform, by: 

( ) ( )( ) σ
σ

σ
σ

λ
µµν

σ
σµνσ

νλ δ xipxip
eeMgpD =∂∂−+∂∂ 2 . (2.5) 

However, because this is SU(2), the 
σσ

i

i pTp =  in the Fourier factor σ
σ xip

e  needs to be a 2x2 

Hermitian matrix.  Why?  If one considers ( ) ν
µν

σ
σµν

Gg ∂∂−∂∂  from (2.1), we know that the 

                                                           
*
 GeV220.246=v  is the vacuum expectation value (vev) based on the Fermi coupling constant 

( )22 GeV220.246/1/12 == vGF  in units of 1== ch . 
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operator )22( ×∂=∂ I
µµ  is really a 2x2 unit matrix of four-gradients operating on the 2x2 

Hermitian matrix νG .   Once we perform the operation ν
µ

G∂ , this 2x2 Hermitian matrix 

structure will be “inherited” from νG , into the 
µ∂  into the momentum space, and the way this is 

achieved in the calculation (2.5) is to employ the non-Abelian momentum 
σσ

i

i pTp =  in the 

Fourier transform.  Additionally, because there are three gauge bosons in SU(2), we in any event 

need three 
σ

ip , which represent momenta associated with each of the corresponding 
σ

iA , and 

from which the 2x2 matrix 
σσ

i

i pTp =  is naturally formed.  Finally, not only is this so-justified 

prospectively, it is also justified “retrospectively” by the problems which are resolved once we 

do  employ 
σσ

i

i pTp =  in the Fourier transform.  As we shall now see, employing 
σσ

i

i pTp =  

in the Fourier transform resolves long-standing problems associated with infinite propagator 

“poles,” and as we shall later see, this enables us to develop a framework to characterize the 

observed spectrum of QCD meson masses. 

Using the non-Abelian 
σσ

i

i pTp = , the term σ
σ

σ
σ

σ
σ µνµνµν xipxipxip

eppepie −=∂=∂∂  is 

straightforward to obtain, and so we use this to rewrite (2.5) above as: 

( ) ( )( ) 2222

2

×× =−−− IppIMppgpD λ
µµν

σ
σµνσ

νλ δ . (2.6) 

It is very important to keep in mind that the above is a 2x2 matrix equation, because 
σσ

i

i pTp =  

is now a Yang-Mills (non-Abelian) momentum.  Thus, 22

22

×= IMM  as well must be 

proportional to a 2x2 unit matrix.  Consequently, without yet focusing on the known properties 

the particular 2x2 internal symmetry matrices σ
σ

pp  and µν pp  which happen to be based on the 

unitary generators of SU(2), which happen to be Hermitian, etc., the propagators ( )σ
νλ pD , to be 

completely accurately specified, must be written using matrix inverses, as: 

( ) { } 12

2

−
−×








+−= Mpp

M

pp
gpD σ

σνλ
νλ

σ
νλ . (2.7) 

In particular, as a general rule, we simply cannot just put the 2x2 matrix 2
Mpp −σ

σ  into a 

denominator because matrix mathematics does not work that way.  In fact, because 2
Mpp −σ

σ  

is a matrix, if one were to write the “mass shell” relation as ( ) 0
2 =− xMpp σ

σ , where x is some 
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two-component vector in the SU(2) internal symmetry space, one would have to say that 2M  

gives the eigenvalues of vectors x for the matrix σ
σ

pp . 

 Of course, once we consider the particular 2x2 matrices which specify SU(2), which 

happen to be Hermitian, and all of which square to unity, this is substantial overkill, because: 

( ) 22

2

2

2

2

2

321

213

321

2132

0

0

0

0

×−=










−

−
=









−








−+

−












−+

−
=−

IMpp
Mpp

Mpp

M

M

pipp

ippp

pipp

ippp
Mpp

i

ii

i

i

i
σ

σ

σ
σ

σ
σ

σσσ

σσσ

σσσ

σσσ

σ
σ

, (2.8) 

that is, 2
Mpp −σ

σ  is simply 
2Mpp i

i −σ
σ

 times a unit matrix, and so can be inverted easily: 

( ) 222

2

2

2

2 1
0

0
1

×
−

+−
=



















−

−
×







+−= I

Mpp

M

pp
g

Mpp

Mpp

M

pp
gpD

i

i
i

i

i

i

σ
σ

νλ
νλ

σ
σ

σ
σ

νλ
νλ

σ
νλ . (2.9) 

This is implicit in known weak and electroweak interaction theory, though likely because of the 

ease of this inversion, this leading to calculation (2.9) is not ordinarily carried out.  

 We now take one final step:  We take each of the three SU(2) gauge bosons 
µ

iG  for 

which the masses are vgMMMM
2
1

)3()2()1( ==== , and place them on mass shell.  That is, we 

set 
23

3

2

2

1

1 Mpppppp === σ
σ

σ
σ

σ
σ

, and we do not worry about, e.g., taking 

023

3 =− Mpp σ
σ

, because now, this is a matrix which is naturally written without difficulty as 

the eigenvalue equation ( ) 023

3 =− xMpp σ
σ

, as noted in passing, above.  Thus, with all the 

gauge bosons on mass shell, 
23Mpp i

i =σ
σ

, and 
22 2MMpp i

i =−σ
σ

.  Then, we substitute this 

back into (2.9) to write: 

( )
















×







+−=

2

2

2

2

1
0

0
2

1

M

M

M

pp
gpD νλ

νλ
σ

νλ . (2.10) 

which is manifestly finite, i.e., absent of infinite poles. 

Finally, we return to the SU(3) current vector 
µµ

i

i JTJ ≡ , and use (2.10) above in the 

expression arrived at through the path integral: 
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( )
( ) ( )

( ) ( ) ( )[ ]∫∫ −=−= σλσ
νλ

σν

ππ
pJpDpJ

pdpd
JW Tr

22
4

4

4

4

2
1 M , (2.11) 

where M  is an invariant amplitude, and where we need to use a trace on the right hand side, as 

is evident from the top line of (2.1), which trace also removes the ½ factor on the right hand side.  

We then use the fact that 
µµ

i

i JTJ ≡  are also 2x2 Hermitian matrices, to rewrite the amplitude 

part of (2.11) as: 

[ ] [ ]



































×







+−=

==

ji

ji

ji

ji

T

M

M

M

pp
gTJJ

TDTJJJDJ

2

2

2

2
1

2

1
0

0
2

1

Tr

TrTr

νλ
νλ

λν

νλ

λνλ
νλ

ν
M

. (2.12) 

Where ( )0,0,0,Mp ≅ν  is comparatively small, and because ( ) ( )1,1,1,1diag −−−=νλg  absent a 

gravitational field of consequence, we may approximate

 

( ) 222
1,1,1,0diag ×−−−≅








+− I

M

pp
g νλ

νλ .  

So, we may further remove this “spin sum” term 
( ) ( )∑ −=

=+−
1,0,1

2 */
λ

ν
λλ

µνµµν εεMppg  from 

inside the trace, leaving: 

[ ]

ij

ji

ji

ji

ji

ji

M

pp
gJJ

T

M

MT
M

pp
gJJTDTJJ










Μ








+−≡











































+−==

224
1

2

2

22
1

1

2

1
0

0
2

1

TrTr

νλ
νλ

λν

νλ
νλ

λν

νλ

λν
M

. (2.13) 

 The heart of what we are after is defined above as the “inverse square mass matrix”: 

{ }[ ]jijiji

ij

TMppT

M

MT

M

MT
12

2

2

4
1

2

2

24
1 Tr

2

1
0

0
2

1

Tr

2

1
0

0
2

1

Tr
1 −

−=



































=



































=








Μ
σ

σσσ ,(2.14) 

which contains 9 components for SU(2).  In general, for SU(N), the analogous matrix will 

contain ( )22 1−N  components.  Thus, for SU(3), this is a 64 component matrix.  The factor of ¼ 

is to account for the normalization factor of ½ in ii
T σ

2
1= , given the two generators iT , jT  

which sandwich the matrix in (2.14).   Now, how do we use this matrix? 
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 For SU(2), using ii
T σ

2
1= , one may calculate that: 






















































=























=



































=








Μ
2

2

2

2

2

2

2

2

2

2
00

0
2

0

00
2

1
00

0
1

0

00
1

2

1
0

0
2

1

Tr
1

vg

vg

vg

M

M

M

M

M ji

ij

σσ . (2.15) 

Therefore, (2.13) now reads: 

[ ]

( ) ( ) ( ) ( ) ( ) ( )( ) 












++++=














++








+−=































+−==

−−

2

33

2

22

2

11110011

2
1

2

33

2

22

2

11

22
1

2

2

2

22
1

***

1
00

0
1

0

00
1

Tr

M

JJ

M

JJ

M

JJ

M

JJ

M

JJ

M

JJ

M

pp
g

J

M

M

M

J
M

pp
gTDTJJ ji

ji

ji

λνλνλν

νµνµνµ

λνλνλν

νλ
νλ

λννµ

µνην

λν

εεεεεε

M

, (2.16) 

where we expressly show via the spin sum how there are actually 3x3=9 terms in the amplitude 

including for the transverse ( 1±=λ ) and longitudinal ( 0=λ ) polarizations.  For the on-

diagonal 1-1, 2-2 and 3-3 transitions, we simply read off the denominators in ( )ij2/1 Μ , and find 

that the mass of the vector bosons which mediate each of these transitions is vgM
2
1= .  For the 

off-diagonal transitions, we read this to say that formally speaking, the mass of any vector boson 

which mediates these transitions is infinite, which simply means that this transition is forbidden 

because it contributes “zero” to the amplitude.  There are only three masses observed mediating 

the 1-1, 2-2 and 3-3 transitions, and these masses all happen to be the same.  Of course, this 

changes a bit in SU(2)xU(1) electroweak theory, but it is not our objective to review that here.  

The point is to be clear about how the masses which were first revealed in (2.3) following 

spontaneous symmetry breaking, make their way into the denominators of the terms in the 

amplitude where they come to specify the observed vector boson masses. 

 If, for contrast to the foregoing, we consider a propagator written in the usual form: 
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( )
2

2

Mpp

M

pp
g

pD
−

+−
=

σ
σ

νλ
νλ

σ
νλ , (2.17) 

we see that what is of fundamental importance about (2.16), and a solid “retrospective” 

justification for using the non-Abelian 
σσ

i

i pTp =  in the Fourier transform (2.5), is that this 

completely inverts the usual problem with singular, propagator poles in propagator theory which 

require use of the “ εi+  prescription” or other means to dodge around the infinite poles.  In 

(2.16), not only do we have a finite amplitude on the diagonal, but a zero amplitude off the 

diagonal.  That is, all terms in the amplitude are finite. 

 It should also be seen that if the M in (2.16) had been 0=M  instead of finite,  i.e., if we 

had not turned the term µν
σ

σµν ∂∂−∂∂g  into ( ) µν
σ

σµν ∂∂−+∂∂ 2
Mg  in (2.4) by the spontaneous 

breaking of symmetry, then the diagonal would then have been infinite, and it would have 

become necessary to use methods such as that of Faddeev-Popov to fix the gauge for terms like 

µν
σ

σµν ∂∂−∂∂g  which do not have an inverse.  Fortunately, (2.16) averts this problem, because 

the M is not zero, and  because the off-diagonal terms are zero.  But most importantly, the need 

to fix the gauge when the mass is zero only occurs in the special case of SU(2).  As we shall later 

see, for SU(3) and higher, we can invert a matrix based even on the massless µν
σ

σµν ∂∂−∂∂g

term, and may do so naturally, without having lift a finger to avert propagator poles by a variety 

of creative, but physically non-elegant, means. 

In sum, what is already interesting about the result in (2.16) – even without yet moving 

on to SU(3) – is that it neatly solves the problem of propagator poles, simply because we take 

special care to form and carefully apply the matrix inverse { } 12 −
− Mpp σ

σ  in the propagator, 

even though this term is easily invertible to ( )2/1 Mpp i

i −σ
σ

 and so tempts one to ignore these 

issues of properly developing the matrix inversion, as discussed in (2.8) and (2.9).  Despite its 

seeming-obviousness based on a careful consideration of matrix algebra, this approach does not 

appear to  heretofore have been discovered. 

To simplify this result as much as possible for generality, and provide the simplest 

possible roadmap into SU(3), we note that because of the normalization ( ) j
i

j

i
TT δ

2
1Tr =  which 

may be applied to any SU(N), the generators are reduced by a factor of 2, just as in SU(2) via 
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1

2
1 σ=i

T .  In SU(3), and generally for higher order groups, we will ii
T λ

2
1=  with a similar 

normalization, and we use Γ  to denote 
iλ  in any Yang-Mills  SU(N) group.  Thus, we can bury 

the ¼ factor in (2.14) into Γ , and write out the mass M of the vector mesons, in general, to be 

determined in relation to the mass m of the gauge bosons, according to the simple and general: 

{ }[ ]Γ−Γ=
−122

2
Tr

1
mp

M
. (2.18) 

We then conclude with one further point of interest.  In this special-case context of SU(2) 

(and by extension electroweak SU(2)xU(1)), we find that  for the three gauge bosons / vector 

mesons, mM = , so that these masses observably manifest as one and the same.  That is, the 

gauge bosons of the SU(2) theory are synonymous with the vector bosons experimentally 

observed in the laboratory.   In SU(3), as we shall see, this is no longer the case.  The gauge 

bosons of SU(3) are typically taken to be 8 massless “gluons.”  The vector mesons of SU(3) are 

characterized in a plethora of particle data that reveals many more than 8 vector mesons, see, 

e.g., [1].  In SU(3), the M and m  in (2.18) are decidedly not the same, mM ≠ .  The gluons are 

hidden from our experimental view, because the only observable in (2.18) is M  and not m . 

Put in another way, referring to (2.3), the observability of a vector mass M comes not 

from the appearance of M in the term σ
σ

σ
σ ϕϕ i

i GGMGGg
2

2
1†2 =  in the L  of (2.4), but rather 

from the appearance of M in the amplitude M  in (2.16).   The only exception is SU(2) (and 

SU(2)xU(1)), because here mM =  and the gauge bosons manifest as free particles.  Not so for 

the gluons of SU(3) or any larger group.  In these larger groups, only M is observed but not m.  

The fact that in Quantum Chromodynamics, we only observe mesons and not gluons, may help 

“explain why we never see individual quarks,” which is the second leg of the “mass gap” 

problem [2], and is fundamentally intertwined with the confinement issue. 

 

3.  Prelude to SU(3), and Spontaneous Symmetry Breaking in N>2 Gauge Groups 

 Beyond its (not negligible) utility in averting infinite propagator poles without resort to 

questionable means, the approach in section 2 is overkill for SU(2).   But for any higher gauge 

group, this approach is vital if one is to understand the observed mass spectrum of, for example, 

the many vector mesons of SU(3) QCD.  This is because for SU(3) and any larger groups,

{ } 12 −
− Mpp σ

σ  has on-diagonal elements which are not all the same, as well as off-diagonal 
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elements which are non-zero, and so will not invert as in (2.8), (2.9) above, without a full, 

careful application of matrix inversion methods. 

 There are a few other things which change in SU(3) and larger groups of which it is also 

important to be aware, as we embark on detailed calculation.  In SU(2), the masses determined 

via ( )ij2/1 Μ  in (2.15) are the same as the masses determined in the expression σ
σ i

i GGM 2

2
1  in 

(2.3).  Simply by way of nomenclature, let us now define the masses which appear in the term 

ϕϕ σ
σ
GGg

†2  after symmetry breaking as “gauge boson masses,” and let us define the masses 

which appear in a ( )ij2/1 Μ matrix as in (2.15) as “vector meson masses,” notwithstanding how 

these terms may be used elsewhere.  This will give us the language to discuss these issues, 

whereby we carefully and deliberately distinguish the ϕϕ σ
σ
GGg

†2  “gauge boson” masses from 

the ( )ij2/1 Μ  “vector meson” masses.  In the special case of SU(2), but only in this special case, 

the “gauge boson masses” are identical with the “vector meson masses” because of the simple 

propagator inversion developed above in (2.9).  In SU(3) and higher, these two types of mass are 

not the same. 

As we shall see, in SU(3), there are only three different gauge boson masses after 

symmetry breaking: one mass 0>  for the µ8G , one mass 0>  for all of the µ4,5,6,7G , and finally, 

a zero mass for all of the µ1,2,3G .  The 2N=6 degrees of freedom in the complex SU(3) scalar ϕ  

give mass > 0 to the five new gauge bosons that are added when one goes from SU(2) to SU(3), 

and the sixth degree of freedom is left over for the Higgs field.  This is just as in SU(2) where 

there are four degrees of freedom, three of which are swallowed by the gauge bosons to acquire a 

longitudinal polarization and gain non-zero mass, and one of which stays with the Higgs. 

In fact, this approach to breaking symmetry can be generalized to any SU(N).  That is, for 

any SU(N), there are 2N degrees of freedom in the scalar ϕ , and the number of new gauge 

bosons introduced in going from any SU(N-1) to SU(N) is always equal to 2N-1.  Thus, we can 

always give mass to only the 2N-1 new gauge bosons by setting νϕ =1  in the scalar ϕ  when we 

break symmetry, leave over a single degree of freedom for the Higgs, and can leave massless all 

the gauge bosons of the SU(N-1) subgroup.  Thus, the vacuum remains invariant under 

transformations within the SU(N-1) subgroup.  As a result, the ( )µ12 −N
G  will always have one 

mass, the ( ) ( ) µ22 12 −− NN
G

K  a second, different mass, and the remaining ( )( ) µ111
2

K−−N
G  will be 
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massless.  This will, for any SU(N), put three masses (one of which is zero) rather than one into 

the ( )2
M+∂∂ σ

σ  of (2.5), and thus yield three ( )ij2/1 Μ   matrices rather than one by the time we 

arrive at the analog of (2.13).  For example, in SU(3), of the three ( )ij2/1 Μ  matrices, one is 

associated with the µ8G  gauge boson, one with the µ4,5,6,7G  gauge bosons, and one with the 

µ1,2,3G  gauge bosons. 

 Turning from the gauge boson masses to what we are calling the “vector meson masses,” 

each of the three  ( )ij2/1 Μ  contains 8x8=64 components, a number of which are independent of 

one another.   The 56 off-diagonal components are related (not independent) via transposition 

and so at most 56/2=28 can be mutually independent.  Meanwhile, up to all 8 of the diagonal 

components can be independent, for a total of up to 28+8=36 independent “vector meson 

masses.”  With three of these ( )ij2/1 Μ  for any SU(3), this makes available up to 36x3=108 

distinct and independent “vector meson” masses, although some of these do turn out to be the 

same and others turn out to be zero (forbidden transitions), so the actual number is somewhat 

reduce as we shall see. 

In general, adding the number of elements on the diagonal to half the number of elements 

off the diagonal and multiplying by three, the maximum number MaxV  of distinct vector meson 

masses which can obtained is from any SU(N) by applying this symmetry breaking approach is 

specified by: 

( ) ( ) ( )[ ][ ] ( ) 2/132/1113
222222 −×=−−−+−×= NNNNNVMax . (3.1) 

In addition, as we shall see later, some of these masses are further “split” into more than one 

mass by various factors involving square roots and even fourth roots of 1−≡i . 

Because there will always be three ( )ij2/1 Μ  matrices no matter what the gauge group 

(which means that if SU(4) is a “leptoquark” gauge group there will still be only three ( )ij2/1 Μ  

matrices), one might look to this as a possible origin of generation replication, but it is too early 

to tell until a firm fit with experimental data is obtained.  Certainly, no matter what, the vector 

meson masses contained in three ( )ij2/1 Μ  will be classified most broadly by a) which of the 

precisely three ( )ij2/1 Μ  they originate from, b) whether they originate from on or off the 



December 15, 2008 DRAFT 

12 

 

diagonal, and c) whether each of the two indexes 1, 2 −= Nji , or ( )22
1,2 −≥≥− NjiN , or 

( ) 1,11
2

≥≥−− jiN , including each member of an index pair ji,  being in the same range as one 

another, or being in different ranges, and d) whether they contain certain imaginary factors which 

further split the mass values.  Section 11, infra, provides a more detailed look at all of this. 

 Finally, in SU(3), and indeed for any higher SU(N), some of the elements of the ( )ij2/1 Μ  

are real, finite numbers, some are complex numbers, some are imaginary numbers, and some are 

zero.  These are suggestive, respectively, of stable massive particles, massive particles with 

specified lifetimes, massless particles with specified lifetimes, and zero-amplitude transitions. 

 Because this approach can be used to yield non-zero vector meson masses in QCD 

yielding the observed short range of strong interactions, this could resolve an important part of 

the so-called “mass gap” problem.  And because the matrices ( )ij2/1 Μ  can be used to generate 

numerical data in gory detail, again see section 11 infra, these predicted masses should be 

abundantly falsifiable using experimental particle data already in existence.  We now turn to a 

detailed calculation along the foregoing lines, for SU(3). 

 

4.  SU(3) Symmetry Breaking, and Fourier Transformation to Momentum Space 

 We now return to Lagrangian (2.1), and start by considering the term ϕϕ σ
σ
GGg

†2  for the 

specific Yang Mills group SU(3).  First, we form: 

















−−++

−+−+

−−

==

σσσσσσ

σσσσσσ

σσσσσ

σσ λ

383

1
1254

12383

1
76

547683

2

2
1

GGiGGiGG

iGGGGiGG

iGGiGGG

GG i

i  (4.1) 

using the customary iiT λ=  SU(3) generators.  We define a three-dimensional complex scalar 

field analogous to (2.2) with six degrees of freedom: 

















+

+

+

=

65

43

21

2

1

ϕϕ

ϕϕ

ϕϕ

ϕ

i

i

i

. (4.2) 

With ( ) ( ) ( ) K++≡
2††2† ϕϕλϕϕµϕϕV  we again use ( ) 2

2
12

0

†
2/ v≡−= λµϕϕ  to find stationary 

points via ( ) 02/ †2† =+=∂ ϕϕϕλϕµϕdV , to define a ( ) 2

2
12

0

†
2/ v≡−= λµϕϕ  non-trivial 
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minimum.
*
  We now we break symmetry of ( ) ( ) 2

2
12

6

2

5

2

4

2

3

2

2

2

12
1

0

† v=+++++= ϕϕϕϕϕϕϕϕ  

by choosing  νϕ =1  and 065432 ===== ϕϕϕϕϕ .  We then combine (4.1) and (4.2) to write:  

















+

+=
































−−++

−+−+

−−

=

σσ

σσ

σ

σσσσσσ

σσσσσσ

σσσσσ

σ

ν

ϕ

54

76

83

2

22

1

383

1
1254

12383

1
76

547683

2

22

1

0

0

iGG

iGG

G

v

GGiGGiGG

iGGGGiGG

iGGiGGG

G , (4.3) 

therefore ( ) ( )σσσσσσσ ϕϕ 54768

3

2

22

1††
iGGiGGGvGG −−== , from which we deduce: 

( )

( )

( ) ( ) ( )















+++

++++
≡















+++

++++
=

++++=

















+

+−−=

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ
σ

σ

σ

σσ

σσ

σ

σσσσσ
σ

σ ϕϕ

11

2

)1(2
1

22

2

)2(2
1

33

2

)3(2
1

44

2

)4(2
1

55

2

)5(2
1

66

2

)6(2
1

77

2

)7(2
1

88

2

)8(2
1

112233

44

22

8
1

55

22

8
1

66

22

8
1

77

22

8
1

88

22

6
1

4455667

7

883
422

8
1

54

76

83

2

54768

3

22

8
1†2

000

GGMGGMGGM

GGMGGMGGMGGMGGM

GGGGGG

GGgvGGgvGGgvGGgvGGgv

GGGGGGGGGGgv

iGG

iGG

G

iGGiGGGvGGg

,(4.4) 

where the final line specifies the form expected in L  for gauge boson masses.  Consequently, we 

now extract the revealed gauge boson masses: 

0)1()2()3(

2
1

)4()5()6()7(

3

1
)8(

===

====

=

MMM

vgMMMM

vgM

. (4.5) 

As described in section 3, five of the six scalar degrees of freedom inϕ  of (4.2) are swallowed to 

give mass > 0 to the five additional gauge bosons µ48K
G  which arise when going from SU(2) to 

SU(3), the sixth degree of freedom goes over to Higgs as in SU(2) and SU(2)xU(1), and masses 

of the gauge bosons from the lower-rank embedded SU(2) subgroup are zero.
**

  There are three 

distinct mass values revealed, namely, vg
3

1 , vg
2
1 , and 0.  And, the above approach may be 

generalized to larger gauge groups as outlined in section 3, though for now, we stick with SU(3). 

                                                           
*
 We shall regard v here, as a vev to be determined by experimental data, which as we will later see, in all likelihood 

does not turn out to coincide with the Fermi vev used in electroweak interactions. 
**

 This leave open the possibility that unbroken SU(2) subgroup might be separately broken at the Fermi vev while 

crossed with U(1) to yield electroweak interactions, which could serve to unify the electroweak with the strong 

interaction. 
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 Putting these revealed masses (4.5) back into (2.1) to arrive at the Proca terms is a little 

bit tricky, and must be done with care.  Using the bottom line of (2.1), we expand out: 

( )
( )( )

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) 











∂∂−+∂∂+

∂∂−+∂∂+∂∂−+∂∂
+













∂∂−+∂∂+∂∂−+∂∂+

∂∂−+∂∂+∂∂−+∂∂
+

∂∂−+∂∂=

+∂∂−∂∂=

ν
µν

σ
σµν

µ

ν
µν

σ
σµν

µν
µν

σ
σµν

µ

ν
µν

σ
σµν

µν
µν

σ
σµν

µ

ν
µν

σ
σµν

µν
µν

σ
σµν

µ

ν
µν

σ
σµν

µ

σ
σ

ν
µν

σ
σµν

µ ϕϕ

12

)1(12
1

22

)2(22
132

)3(32
1

42

)4(42
152

)5(52
1

62

)6(62
172

)7(72
1

82

)8(82
1

†2

2
1

GMgG

GMgGGMgG

GMgGGMgG

GMgGGMgG

GMgG

GGgGgG
i

iL

, (4.6) 

where we have grouped the terms in accordance with the three distinct masses in (4.5).  To 

consolidate large expressions such as (4.6), we shall use vgM
3

1
)8( =  as is, but will define 

vgMMMMM
2
1

)4()5()6()7()47( ====≡
K

 to be representative of the 
)47( K

M  mass values, and 

will define 0)1()2()3()13( ===≡ MMMM
K

 to be representative of this final set of mass values.  

We shall use, e.g., the notation νµνµνµνµνµ
4

4

5

5

6

6

7

7

47

47 GGGGGGGGGG +++≡K

K
 to represent 

an implied sum over the indicated subset of the Latin indexes.  With this notational compaction, 

we rewrite (4.6) above as: 

( )
( )( ) ( )( )

( ) ν
µν

σ
σµν

µ

ν
µν

σ
σµν

µν
µν

σ
σµν

µ

σ
σ

ν
µν

σ
σµν

µ ϕϕ

13

132
1

472

)47(472
182

)8(82
1

†2

2
1

K

K

K

KK

GgG

GMgGGMgG

GGgGgG i

i

∂∂−∂∂+

∂∂−+∂∂+∂∂−+∂∂=

+∂∂−∂∂=L

, (4.7) 

including setting 0)13( =
K

M .  This final point means that one of these factors, µν
σ

σµν ∂∂−∂∂g , 

remains in the massless form usually thought to have no inverse and so giving rise to the need for 

Faddeev-Popov or similar gauge fixing.  As we shall also see, now that we are using SU(3), the 

need for any such gauge fixing becomes obviated. 

It is important to keep in mind, if one uses the same approach to symmetry breaking for 

higher order gauge groups SU(N>3), that there will still always be only three distinct terms in the 

analog to (4.7), and that one of these will be of the massless form µν
σ

σµν ∂∂−∂∂g .  For 

example, for SU(4), the first term would be ( )( ) ν
µν

σ
σµν

µ
152

)15(152
1 GMgG ∂∂−+∂∂ , the second 

( )( ) ν
µν

σ
σµν

µ
9142

)914(9142
1 K

KK
GMgG ∂∂−+∂∂ , and the third ( ) ν

µν
σ

σµν
µ

18

18

K

K
GgG ∂∂−∂∂ , but 
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there would still be only three terms.  This is what was meant in section 3 when we spoke of 

always having exactly three gauge boson masses, two of which are >0 and one of which =0, no 

matter what rank of the gauge group SU(N).  And, this is why one might suspect that the 

replication of nature into three generations emanates from the existence of three terms in (4.7) 

and from the fact that this generalizes to any gauge group of any size. 

 Now, contrasting with (2.5), we use each of the three main terms in (4.7) to carry out 

three distinct Fourier transforms: 

( ) ( )( )
( ) ( )( )
( )( )









=∂∂−∂∂

=∂∂−+∂∂

=∂∂−+∂∂

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

λ
µµν

σ
σµνσ

νλ

λ
µµν

σ
σµνσ

νλ

λ
µµν

σ
σµνσ

νλ

δ

δ

δ

xipxip

xipxip

xipxip

eegpD

eeMgpD

eeMgpD
2

)47(

2

)8(

K
. (4.8) 

However, we can economize on mathematical calculation by representing all of the above via: 

( ) ( )( ) σ
σ

σ
σ

λ
µµν

σ
σµνσ

νλ δ xipxip
eeMgpD =∂∂−+∂∂ 2 , (4.9) 

and thereafter substituting vgMM
3

1
)8( == , vgMM

2
1

)47( ==
K

, and 0)13( ==
K

MM , in 

essence, as what will shortly become a three-value quantum number.  So, from (4.9), we again 

calculate σ
σ

σ
σ

σ
σ µνµνµν xipxipxip

eppepie −=∂=∂∂ , and thus obtain: 

( ) ( )( ) 3333

2

×× =+−− IppIMppgpD λ
µµν

σ
σµνσ

νλ δ , (4.10) 

just as in (2.6), but now, with a 3x3 rather than 2x2 matrix equation, and with the ability to plug 

in any one of the mass values vgMM
3

1
)8( == , vgMM

2
1

)47( ==
K

, and 0)13( ==
K

MM . 

 The 3x3 propagator is then specified as in (2.7) by the matrix inverse relation: 

( ) { } 12

2

−
−×








+−= Mpp

M

pp
gpD σ

σνλ
νλ

σ
νλ . (4.11) 

Now, all we need to do is calculate the inverse { } 12 −
− Mpp σ

σ , and we can then start to crank out   

vector meson masses, using ( ) { }[ ]jiij
TMppT

122

4
1 Tr/1

−
−=Μ σ

σ  from (2.14).  However, this is 

an involved, tedious calculation that requires very careful double and triple checking. 

 To being this calculation, patterned on (4.1), we first write: 

















−−++

−+−+

−−

==

σσσσσσ

σσσσσσ

σσσσσ

σσ λ

383

1
1254

12383

1
76

547683

2

2
1

ppippipp

ippppipp

ippippp

pp i

i , (4.12) 
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so that: 
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ippipp

ipppp

ippipp

pipp

ppipp

ipppp

ippipp

M

pppp

pppp

ippipp

ipppp

pipp

ppipp

ippipp

ippp

ippipp

ppipp

ippp

M

pppp

M

ppippipp

ippppipp

ippippp

ppippipp

ippppipp

ippippp

Mpp

σ
σ

σ
σ

σσ
σσ

σσ
σσ

σσ
σσ

σσ
σσ

σσ
σσ

σσ
σσ

σ
σσ

σσ
σσ

σσ
σσ

σσ
σσ

σ
σ

σ
σ

σσ
σσ

σσ
σσ

σσ
σσ

σ
σσ

σσ
σσ

σσ
σσ

σσ
σ

σσ
σσ

σσ
σσ

σσ
σ

σ
σ

σ
σ

σσσσσσ

σσσσσσ

σσσσσ

σσσσσσ

σσσσσσ

σσσσσ

σ
σ

K

K

.(4.13) 

Immediately we see why this inversion is not at all trivial, because (4.13) is the SU(3) equivalent 

of (2.8) in SU(2).  Equation (2.8) was easily invertible, because the diagonal was proportional to 

the unit matrix, and the off-diagonal elements were zero.  Equation affords us no such luxury:  

The diagonal is not proportional to the unit matrix, the off diagonal elements are not zero, and in 

general there is a complicated mix of both real and imaginary terms.  That is why it was so 

important to work through SU(2) meticulously in preparation for SU(3).  But (4.13), nonetheless, 

is the matrix that we must invert to obtain the SU(3) propagator (2.7), (4.11), as well as the 

inverse square mass matrices ( ) { }[ ]jiij
TMppT

122

4
1 Tr/1

−
−=Μ σ

σ  using each of the three mass 

values vgMM
3

1
)8( == , vgMM

2
1

)47( ==
K

, and 0)13( ==
K

MM  revealed in (4.5). 

 The symmetry is broken; we now turn to the formidable task of inverting this matrix. 

 

5.  Simplification and Reduction of the SU(3) Momentum Space Matrix 

Following the same path as we did following (2.9), we will want to put all the gauge 

bosons on mass shell, and them make this on-shell substitution into (4.13).  Thus, referring to 

(4.5), we set: 
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σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

1

1

2

2

3

32

)13(

4

4

5

5

6

6

7

722

4
12

)47(

8

822

3
12

)8(

0 ppppppM

ppppppppgvM

ppgvM

====

=====

==

K

K
. (5.1) 

This immediately enables us to simplify the diagonal in (4.13).  Keeping in mind that 

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

4

4

5

5

6

6

7

7

47

47
pppppppppp +++≡

K

K , the upper left element in (4.13), for example,

2

47

47

8

8

3
4 Mpppp −+ σ

σ
σ

σ
K

K , becomes  222

9
1322222

9
4 MgvMgvgv −=−+ ,  which is either 

22

9
10 gv  if we insert 22

3
12

)8(

2
gvMM == , 22

36
43 gv  for 22

4
12

)47(

2
gvMM ==

K
, or 22

9
13 gv  for 

0
2

)13(

2 ==
K

MM .  The same sort of reduction applies to other terms. 

We also note a proliferation of cross terms, such as σ
σ

3

8
pp , and inspection of the off-

diagonal elements of (4.13) makes clear that these cross terms are not the exception, but the rule.  

Thus, we need to supplement (5.1) to deal with these cross terms. 

 Each term σ
σ

j

i
pp  in (4.13) is a scalar Lorentz invariant, describing the square of the total 

energy when an σiA  collides with an σjA .  Some of the cross terms are simple.  For scalar 

products within the same “sector” of SU(3) wherein each gauge bosons has identical mass – 

analogous classically to two billiard balls colliding – we may easily use (5.1) to write: 

01

2

1

3

2

3

22

4
1

4

5

4

6

5

6

4

7

5

7

6

7

===

======

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

pppppp

gvpppppppppppp
. (5.2) 

The product between the 
)8(M  and the 

)47( K
M  sectors is a little more complex, but still 

straightforward.  From the σ
σ

8

822

3
12

)8( ppgvM ==  sector, each of the σ8p  contributes a vg
3

1  

factor, and from σ
σ

σ
σ

σ
σ

σ
σ

4

4

5

5

6

6

7

722

4
12

)47( ppppppppgvM =====
K

, each of the σ47Kp  

contributes a vg
2
1  factor.  (We just multiply square roots here, similarly to what one would do 

classically if the two billiard balls had different masses.)  Thus: 

22

32

1
4

8

5

8

6

8

7

8 gvpppppppp ==== σ
σ

σ
σ

σ
σ

σ
σ . (5.3) 

 The somewhat puzzling terms, are those in which a massive gauge boson momentum is 

contracted with a massless one, such as σ
σ

3

8
pp , σ

σ
2

7
pp , etc.  This is analogous to shining light 

on a billiard ball, rather than hitting it with another ball.  By the (5.3) analysis each of the 
µ

13Kp  
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contributes a “zero” because 00 = , yet there is still an energy content even in a luminous 

0=σ
σ

pp  interaction.  To address this, we borrow from Mandelstam, and via (5.1), we define a 

Mandelstam-type variable s as follows: 

( )( )
uu

uuuuu

ppgvppgv

pppppppppps

3

8

2

322

4
1

3

722

4
1

3

7

3

3

7

7

37

37

22

2

µµ

µµµµµ

+=+=

++=++≡
, (5.4) 

where 
uu

pppp 3

8

2

3
3

7
µµ =  in the final line is based on observing that σ

σ
σ

σ
8

8

4
3

7

7
pppp =  and 

again employing the square root  Then, we invert this, and use (5.1) to write: 

( )
( )22

4
1

3

1
3

8

22

4
1

2
1

3

4

3

5

3

6

3

7

gvspp

gvspppppppp

u

uuuu

−=

−====

µ

µµµµ

, (5.5) 

where the interaction is the same for all of the equal momenta in the µ
47Kp  sector.  Now, we 

substitute into (4.13) from (5.1) through (5.5) as appropriate, and matrix (4.13) can be reduced to 

a function, exclusively, of group coupling g, Mandelstam-type parameter s, mass M, and vev v. 

 First, to simplify reduction, because all of the µ
47Kp  have the same effect in the scalar 

products of (4.13),  as do all of the µ
13Kp , we will substitute the highest-indexed momentum in 

each sector for any lower-indexed momentum, so that the only momenta now appearing are σ8p , 

σ7p , and σ3p .  This yields many factors of i±1  because, for example, σσ 54 ipp ±  becomes 

σσ 77 ipp ±  which becomes ( )ip ±17σ .  This intermediate, easy reduction step yields: 

( )

( )( )
( )( )

( )

( )( )

( )( )

( )

( )( )
( )( )

( )( )

( )( )
( )( )

( )

( )( )

( )( )

( )( )

( )( )
( )( )

















































−

++

++

−−++

+−++

−+

−−++

+++

+

−−−+

+−−+

−+

−

++

−+

+−+

+−++

+

−−−+

−−+

−

+−+

+−−+

−

−+

=−

2

3

3

7

7

3

8

3

1
3

3

8

8

3
1

3

3

3

8

3

1

3

3

8

3

3

1

7

7

7

3

7

8

3

1

7

3

8

7

3

2

3

3

8

3

3

1

3

3

3

8

3

1

7

7

2

3

3

7

7

3

8

3

1
3

3

8

8

3
1

7

3

7

3

7

8

3

1

8

7

3

2

3

7

8

7

3

1

3

7

7

8

3

2

3

7

3

7

8

7

3

1

7

8

3

2

2

7

7

8

8

3
4

2

22

2

1

1

11

1

11

1

1

1

11

22

2

11

1

1

1

11

1

11

1

1

4

M

pppp

pppppp

ppppi

ppppi

ppii

ppppi

ppii

ppi

ppppi

ppppi

ppii

M

pppp

pppppp

ppii

ppppi

ppi

ppppi

ppii

ppi

ppii

ppppi

ppi

Mpppp

Mpp

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

.(5.6) 
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Then, we further reduce, and at the same time, we apply (5.1) through (5.5) to obtain: 





































−+
−+

−

++

−

+−

−

−−++

+−

−−

−+

−−

+−

−

=−

2

3
222

9
4

3
222

6
1

3
222

3
2

2
122

24
1

2
122

24
7

3
222

6
1

3
222

3
2

2

3
222

9
7

2
122

24
1

2
322

24
5

2
122

24
1

2
122

24
7

2
122

24
1

2
322

24
5

222

9
13

2

Msgv
sigvi

sgv

sigvi

sgv

sigvi

sgv

Msgvsigvi

sgv

sigvi

sgv

sigvi

sgv

Mgv

Mpp σ
σ . (5.7) 

 Now, making reference to (5.1), we would like to extract the factor 
22

4
12

)47( gvM =
K

 to 

the outside of the matrix, so as to in effect, normalize the inside of the matrix about this mass 

magnitude.  Referring to (5.5), we also note that ( )22

4
1

2
1

3

7 gvspp
u

−=µ .  So we now define a 

dimensionless S, normalized to Sgvs
22

4
1≡ , so that ( )122

8
1

3

7 −= Sgvpp
u

µ  and: 

22

8
1

3

8

2

3

22

8
1

3

7

11
gv

pp

gv

pp
S

uu
µµ

+=+≡ , (5.8) 

see just after (5.4).  Requiring that 03

7 ≥
u

pp µ , i.e., that this scalar product must never be less 

than zero lest the interaction energy become negative, we see that 1≥S  is a lower, non-negative 

bound for S .  Similarly, using 
22

4
12

)47( gvM =
K

 as a reference, we define a dimensionless mass 

ratio 22

4
122

/ gvM≡µ .  Thus, from (5.1), the only three permitted choices for this ratio are 

3
42 =µ  (for 

)8(M ), 12 =µ  (for 
)47( K

M ) and 02 =µ  (for 
)13( K

M ), so this is in the nature of a 

three-valued quantum number (which we suspect may be related to generation replication).   

With all of this, the matrix (5.7) now reduces to its simplest, final form: 

( ) ( )
( ) ( )

( ) ( ) 















−+−+−++−

−−−−−+++−

+−−+−+−−

=−
2

3
2

9
16

3
2

3
2

3
2

3
8

2
1

6
1

2
1

6
7

3
2

3
2

3
2

3
82

3
8

9
28

2
1

6
1

2
3

6
5

2
1

6
1

2
1

6
7

2
1

6
1

2
3

6
52

9
52

22

4
12

µ

µ

µ

σ
σ

SSiSSiS

SiSsSiS

SiSSiS

gvMpp . (5.9) 

This is the matrix we now must invert, to obtain ( ) 12 −
− Mpp σ

σ  for the propagator. 
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6.  Obtaining the SU(3) Momentum Space Inverse 

 There are two steps required to invert the matrix (5.9).  First, we determine the adjugate 

matrix A .  Second, we divide through by determinant 22 mp − .  Thus, cross-noting (2.18), 

{ }( )Γ−Γ=
−1222 Tr/1 mpM , via which we wish to find meson masses, we now obtain: 

{ } A
mp

mp
22

122 1

−
=−

−
. (6.1) 

The adjugate calculation is very labor-intensive, but for the reader who attempts this, 

there is a built in way to check one’s calculations for accuracy which it is very important to do:  

Because (5.9) is Hermitian, one may calculate the upper-right off-diagonal terms, and then 

independently calculate the lower-left off-diagonal terms.  If these are not the Hermitian 

conjugates of one another, then one needs to debug the calculation.  For the diagonal elements, 

of course, this is not an option.  But prudence demands repeating these calculations at least twice 

to make sure one obtains the same results.  The embedding of parameters µ  and S then ensures, 

once this calculation is successfully completed, that it does not have to be repeated for different 

values of these parameters: one simply plugs in the desired parameters and cranks out the results.  

 Following this very laborious calculation, the adjugate matrix turns out to be: 

( )

[ ] [ ]

[ ] [ ]

[ ] ( )




































+−+−−
−+−−−

+−−+−

−−+−−

+−−+−

−+−−+

+−−+−
+−−−+

−−+−−

−+−−

−−+−+

+−−+−

−−+−+

−+−−
−−+−

×=

42

9

802

3

22

2

5

27

41

162

2795

2

3

22

3

22

27

86

27

113

2

3

82

3

22

2

1

27

167

27

449

2

6

12

2

12

3

4

27

17

2

6

72

2

12

9

60

27

161

2

3

22

3

22

27

86

27

113

2

3

82

3

22

2

1

27

167

27

449

42

9

682

3

22

2

1

27

131

162

1439
2

6

12

2

12

3

4

27

17

2

6

52

2

32

27

127

2

6

12

2

12

3

4

27

17

2

6

72

2

12

9

60

27

161

2

6

12

2

12

3

4

27

17

2

6

52

2

32

27

127

2

3

12

3

4

9

48

81

164

222

4

1

4

4

µµµ
µµ

µµ

µµ

µµ

µµ

µµ
µµµ

µµ

µµ

µµ

µµ

µµ

µµ
µ

SSS
SSSi

SSS

SSSi

SSS

SSSi

SSS
SSS

SSSi

SSS

SSSi

SSS

SSSi

SSS
SS

gvA

.(6.2) 

Thereafter, one can make use of the two-term products calculated in the course of finding 

(6.2), to calculate the determinant: 

( ) ( )64

3
322

9
21722

9
392

9
7832

27
442

27
1398

729
16610

322

4
122 2 µµµµµ −+−+−−−+−×=− SSSSSgvmp . (6.3) 

 To manage mass calculations, it helps to have a total expression for { } 122 −
− mp  in (6.1) 

combining the adjugate and the determinant.  The easiest and most general approach is to define: 
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{ }
















=−
−

IHG

FED

CBA
122

mp , (6.4) 

with: 

64222232

22

22

4
1 729777617577315963181458119343774616610

243972388814761

µµµµµ

µ

−+−+−−−+−

−−+−
=

SSSSS

SS

gv
A ,(6.5a) 

[ ]
64222232

222222

22

4
1 145815552351546318126362916238687549233220

24372914581944918121521871458583268581

µµµµµ

µµµµ

−+−+−−−+−

−−+−+−+−−
=

SSSSS

SSSiSSS

gv
B ,(6.5b) 

[ ]
64222232

222222

22

4
1 145815552351546318126362916238687549233220

2437291458194491817017291458972086941

µµµµµ

µµµµ

−+−+−−−+−

−−+−++−−+−
=

SSSSS

SSSiSSS

gv
C ,(6.5c) 

[ ]
64222232

222222

22

4
1 145815552351546318126362916238687549233220

24372914581944918121521871458583268581

µµµµµ

µµµµ

−+−+−−−+−

−−+−−−+−−
=

SSSSS

SSSiSSS

gv
D ,(6.5d) 

64222232

4222

22

4
1 145815552351546318126362916238687549233220

1458110169727297074129511

µµµµµ

µµµ

−+−+−−−+−

+−−−+
=

SSSSS

SSS

gv
E ,(6.5e) 

[ ]
64222232

222222

22

4
1 145815552351546318126362916238687549233220

97297214584644610238889727299018242461

µµµµµ

µµµµ

−+−+−−−+−

−+−−++−−+−
=

SSSSS

SSSiSSS

gv
F ,(6.5f) 

[ ]
64222232

222222

22

4
1 145815552351546318126362916238687549233220

2437291458194491817017291458972086941

µµµµµ

µµµµ

−+−+−−−+−

−−+−−+−−+−
=

SSSSS

SSSiSSS

gv
G ,(6.5g) 

[ ]
64222232

222222

22

4
1 145815552351546318126362916238687549233220

97297214584644610238889727299018242461

µµµµµ

µµµµ

−+−+−−−+−

−+−−−+−−+−
=

SSSSS

SSSiSSS

gv
H ,(6.5h) 

64222232

4222

22

4
1 145815552351546318126362916238687549233220

14581296097236452214251551

µµµµµ

µµµ

−+−+−−−+−

+−+−−
=

SSSSS

SSS

gv
I .(6.5i) 

In the above, we have removed the term-by terms fractions in (6.2) and (6.3) by placing 

everything over one common denominator ( 72936 =  in A and 145832 6 =⋅  in the B through I) 

and then discarding the denominator.  Now, we start using the above to find QCD meson masses. 

 

7.  Specification of the SU(3) Meson Mass Table 

 First, we now turn back to (2.18) developed in the context of SU(2) which we shall write 

here with its internal symmetry indexes as ( ) { }( )jiij
Γ−Γ=

−1222 Tr/1 mpM .  This shows how the 

vector meson masses are extracted from the matrix (6.4), (6.5).  Because (6.5) will vary with the 

choice of the parameters 2µ  and S, and to save the effort of having to repeatedly apply 8x8=56 

combinations of indexes to extract out the various ( )ij2/1 M  for various choices of  2µ  and S, it 
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helps to do this once and for all based on (6.4).  Thus, taking (6.4), sandwiching it between the 

64 combinations of the ji,  indexes in { }( )ji Γ−Γ
−122Tr mp , we obtain, using 

ii λ=Γ : 

{ }[ ]
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) IEADBiDBGCiGCEIFHiFH

BDiEAEAiFiFiFCiC

BDAEiEAiFFFiCC

CGiHiHIAIAiiCBiB

CGiHHAIiIACiBB

IEiHHiGGIEHFiHF

FHiGiGDiDHFiIEIEi

FHiGGiDDFHEIiIE

ji

ij

3

1

3

1

3

4

3

1

3

1

3

1

3

1

3

1

3

1

3
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2

2222
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1

+++−+−−−+−

+−+−
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+−+−
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−−−++−

−+−+−

+−−−−−+

=−=






 −
λλ mp

M

.(7.1) 

It is important to keep in mind that (7.1) is not really a “matrix,” but rather is simply a “map” or 

8x8 “table” of the square inverses of the various masses which appear in the invariant amplitude, 

see (2.16).  Thus, we omit the () which are ordinarily used to enclose a matrix subject to the rule 

for performing mathematical operations with matrices, to show that this is merely a table and not 

a matrix. As such, one does not need to “matrix invert” this any longer: that work is now done.  

One may simply invert and then take the square root (or take the square root and invert) each 

entry in the above, entry-by-entry, to obtain the SU(3) meson “mass table”: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5.

3
1

3
1

3
45.45.5.45.45.5.45.45.45.5.4

5.45.5.5.5.5.5.5.5.5.5.5.5.

5.45.5.5.5.5.5.5.5.5.5.

5.45.5.5.5.5.5.5.5.5.5.5.5.

5.45.5.5.5.5.5.5.5.5.5.

5.45.5.5.5.5.5.5.5.5.5.

5.45.5.5.5.5.5.5.5.5.5.5.5.

5.45.5.5.5.5.5.5.5.5.5.

23232323333

23

23

23
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3

3

3

−−−−−−−−−−−

−−−−−−−−−−−

−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−

−−−−−−−−−−−

−−−−−−−−−−−−

−−−−−−−−

+++−+−−−+±

++−

−−+±

++−

−−+

−±++−

−++−

+±−−+

=

IEADBiDBGCiGCIEiFHiFHi

BDiEAEAiFFiFiCCi

BDEAiEAFiFiFCiC

CGiHHiIAIAiCiBBi

CGHiHIAiIAiCBiB

IEHiiHGiiGIEHFiHF

FHiGGiDDiHFiIEIEi

FHiGiGDiDHFiIEiIE

ijM

.(7.2) 

Of course, 
1/1 −==− iii , by definition, so ( ) 1.

/1
−

−=−= iii .  Recall also, that ( )ii +±= 1
2

15. .  

From these, we derive and apply the useful square root expressions ( ) ( )iii +±=−=
−

1
2

15.5.  and 

thus ( ) ( ) ( ) ( )iiiiiiii −±=+⋅±=⋅=−==− 11/1
2

1

2

15.5.5.5. .  Further, we find it helpful to obtain 

and use ( ) ( ) 5.

2

1

2

15. 11 iiiiii =+±=−±=⋅ − . 

Now, to obtain vector meson masses, all we need to do is make choose 2µ  and S, plug 

those choices into (6.4), (6.5), and then plug those, in turn, into (7.2).  Because of the various 

imaginary and complex as well as real factors in the above, and this “square root of i”  
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mathematics which permeates the expressions in (7.2), and given that an “imaginary mass” is 

understood to be a “real half-life,” we expect that (7.2) will have something to say not only about 

the vector meson masses, but also about their lifetimes, and that the pure mathematics of i  is 

central to understanding particle lifetimes. 

 

8.  Calculation of the SU(3) Inverse for µ=0 and S=1 

 From (6.5) we see that there is an overall factor of 22

4
1 gv  in the denominator which sets 

the mass scale, as is to be expected.  There are also two parameters in (6.5), namely, 2µ  which is 

restricted to take on one of the three values 
3
42

,1,0=µ , see just before (5.9), and S, which we 

know from just after (5.8) is restricted to 1≥S .  Because 2µ  is so restricted, it is, in effect, a 

three-valued quantum number.  Further, because each value of 2µ  causes a wholesale scaling of 

the magnitudes of { } 122 −
−mp  via the determinant 22 mp − , see (6.1), (6.3), which in turn will 

cause a wholesale scaling of the vector meson masses in (7.1), we will keep an eye on the 

possibility that 
3
42

,1,0=µ , in particular, may be a generation quantum number, since there also 

happen to be precisely three generation which are distinguished solely by their masses which also 

scale on a wholesale basis from one generation to the next. 

 While we do not yet know a great deal about S, we do know that both 2µ  and S serve to 

a) shift the magnitude of each component of the adjugate (5.2) relative to the other components 

and b) alter the magnitude of the determinant (5.3) to cause an overall scaling of { } 122 −
−mp .  

Because experimentally-observed mesons do not have a continuous spectrum of masses, but are 

restricted to discrete mass values, we expect that S is either a quantum number restricted to 

discrete values just like µ , or is a parameter which has a single, unique value.  In either case, S 

is to be set in accordance with matching up to experimental observation, because were S to be 

continuous rather than discrete, we would end up with a continuous spectrum of vector meson 

mass values which is not what is experimentally observed. 

 At the outset, let us use (6.5) to determine the mass predictions for 0
2 =µ , while setting 

1≥S  to is minimum value 1=S .  In setting 1=S , we are likely making an unphysical, but very 

simplifying choice, because via (5.8), 1=S  means 03

8

2

3

3

7 ==
uu

pppp µµ , and so we are 
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effectively “turning off” the effects of the scalar product between the 
µ13KG  and the 

µ48KG .  

Nonetheless this choice does yields certain reductions which enable us to gain our bearings and 

to see how this all works in specific detail.  Another choice of S which may be of interest for a 

“hand calculation” (as opposed to a computer calculation which can sample many S possibilities) 

is 2=S , which sets 
22

8
1

3

7 gvpp
u

=µ , and  22

34

1
3

8 gvpp =σ
σ , contrast 22

4
1

7

7
gvpp =σ

σ  from 

(5.1) and 22

32

1
7

8 gvpp =σ
σ  from (5.3).  Thus, 2=S  effectively halves the 22gv  coefficient 

when σ7p  or σ8p  is “mixed-contracted” with 
u

p3
, and may make physical sense. 

 So, calculating for the very simplest case, 02 =µ , 1=S , from (6.5) we obtain: 

( ) 222

4
122

4
122

4
1 112

571

242

451

1458119343774616610

972388814761

⋅

⋅
==

−−+−

−+−
=

gvgvgv
A , (8.1a) 

[ ] ( )
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3
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4
1

5.

22

4
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4
1 112

31
21

968

271

2916238687549233220

145819449181458583268581

gv
ii

gv

i

gv
B

−±=−−=
−−+−

+−+−−
= , (8.1b) 

[ ] ( )
23

3

22

4
1

5.

22

4
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4
1 112

31
21
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271

2916238687549233220
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gv
ii

gv

i

gv
C
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−−+−
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= , (8.1c) 

[ ] ( )
23

3
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4
1

5.

22

4
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4
1 112

31
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968

271

2916238687549233220
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gv
ii

gv

i

gv
D ±=+−=

−−+−
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= , (8.1d) 
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2
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4
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=
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E , (8.1e) 

[ ]
27

4

22

4
122

4
122

4
1 112

19731

15488

159571

2916238687549233220

1458464461027299018242461

⋅

⋅
−=−=

−−+−

−−+−+−
=

gvgv

i

gv
F , (8.1f) 

[ ] ( )
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3
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4
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H , (8.1h) 

22

2

22

4
122

4
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4
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4
1 112

6731

484

6031

15488

192961

2916238687549233220

36452214251551

⋅

⋅
===

−−+−

−−
=

gvgvgvgv
I , (8.1i) 

where we have reduced using 
5.

21 ii ±=+  and 
5.

21
−±=− ii , and also decomposed each ratio 

into its prime number factors.  It is noteworthy that the complex terms B, C, D, G all reduce  

down to the same fraction 27/968, times the simple i±1 , while in the other complex terms F and 

H, the imaginary portion cancels identically.  We also note that the E and I terms on the diagonal 



December 15, 2008 DRAFT 

25 

 

turn out to be equal.  All of these result from the simplifying choice of 02 =µ , 1=S , and in 

general, these simplifications will not occur.  Finally, we also note the appearance of the prime 

factor “11” in the denominators throughout, which commonly appears in the renormalization 

equations for Yang-Mills groups, see. e.g. [3], equation (15.54).  Using (6.4), we now summarize 

the above by: 

{ } ( )

























±

±

±±

===−

−−

−

484
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15488

15957

968

27
2

15488

15957

484

603

968

27
2

968

27
2

968

27
2

242

45

1
1,0

5.

5.

5.5.

22

4
1

122

i

i

ii

gv
Sµmp . (8.2) 

To follow up the earlier discussion toward the end of section 2, it is worth noting that because 

02 =µ , this originates from the µν
σ

σµν ∂∂−∂∂g  term in the Lagrangian density (4.7), which in 

Abelian theory has no inverse.  Normally, one needs Faddeev-Popov or some analogous gauge 

fixing process obtain a finite result.  Here, however, because we use SU(N>2), we obtain a finite 

results in due course without any special measures, simply by applying ordinary matrix methods. 

 Now, we simply insert values from the above into (7.2), to see what masses and lifetimes 

result.  However, there is some additional groundwork required,  which can be seen, for example, 

when we try to obtain ( ) 5.484
23

−
−= GCM and ( ) 5.45.85

23
−− += GCiM  in (7.2). Specifically, 

using (8.2) in (7.2), we find, for example, that: 

( ) ( ) 5.5.5.

5.

4

5.

5.5.4

2
1
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2
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2
27
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6

968

27
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−
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M
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( ) ( ) 5.5.5.
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±±
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


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


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±

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
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+
= iiiii

vg
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vg

M
,(8.3b) 

Noting the extra factor 
5.−i  in 85M and elsewhere in (7.2), we have used both ( )ii +±= 1

2

15.  and 

( )ii −±=− 1
2

15. , see after (7.2), to obtain and use ( ) ( ) 5.

2

1

2

15.5.1 11 −=−±=+±=⋅= iiiiiii .  This 

implies that these “square root of i terms” conjugate at each order and so return to their original 

form every second order, i.e., 
)5.(2)5.( +++ = nn ii , where ∞−−−∞= KK 1,1,0,1,2n , versus the four-

order cycle that is typical of the usual complex math, i.e., 
4+= nn ii .   However, terms such as 
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( ) 5.5.5.2
−−± ii m  and ( ) 5.5.5.2

−−±± ii  are somewhat unusual, and if these appear in the simplest case 

where 02 =µ  and 1=S , then ever more unusual versions of these terms will appear in other, 

more complicated cases.  Further, these terms will be at the heart of what we anticipate will be 

the calculation of particle lifetimes.  Thus, we need to digress briefly into some mathematics of 

imaginary numbers, to determine how to evaluate terms such as ( ) 5.5.5.2
−−± ii m  and 

( ) 5.5.5.2
−−±± ii . 

 

9.  The Imaginary Mathematics of Particle Lifetimes 

 In order to deal with expressions such a (8.3), it is best to find the general form 

expression for ( ) 5.5.5. −−+ BiAi , which we shall define as ( ) 5.5.5. −−+≡+ BiAiiQP .  The goal is to 

find P and Q in terms of A and B, and so deduce the “answer” iQP + .  To start out, we  again 

use ( )ii +±= 1
2

15.  and ( )ii −±=− 1
2

15.   to write: 

( ) ( ) ( )( ) ( )( ) ( ) 5.

2

15.

2

15.

2

1

2

1
5.5.5. 11

−−−−− +≡±+±±=−±+±=+ DiCBAiBAiBiABiAi m , (9.1) 

and we now define BAC ±±≡  and BAD m±≡ , using the inverted m , which is important to 

track the i−1  coefficient of B versus that of i+1  for A.  Now, we need to obtain ( ) 5.−
+ DiC . 

 First, let us invert DiC + , to obtain ( ) ( )iNMDiC +≡+
−1

.  Then, finally, we will take 

the square root.  For the inversion, we thus need to calculate: 

( )( ) ( ) 1=++−=++ CNDMiNDCMiNMDiC . (9.2) 

This yields the simultaneous equations: 





=+

=−

0

1

CNDM

NDCM
, (9.3) 

which have the well-known solution: 









+
−=

+
=

22

22

DC

D
N

DC

C
M

, (9.4) 

 Now that we have ( ) ( )iNMDiC +≡+
−1

, the next step is to find ( ) ( )5.5.
iNMDiC +≡+

−
.  

This now specifies the desired “answer” expression iQP +  such that: 
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( ) iPQQPiQPiNM 2
222

+−=+=+ . (9.5) 

This has the simultaneous equations: 





=

−=

PQN

QPM

2

22

, (9.6) 

and via the intermediate quadratic 0
2

4
124 =−+ NMQQ , this is solved by:  
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. (9.7) 

 Now, we go backwards, since iQP +  is our answer.  Serially using (9.7), (9.4) and (9.1), 

we make appropriate substitutions and reduce to find that:  
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( ) ( )
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i
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m

m
. (9.8) 

Finally, we return to the terms  for ( ) 5.5.5.2
−−± ii m  in 84M  in (8.3a), and ( ) 5.5.5.2

−−±± ii  in 

85M  in (8.3b), and we keep in mind that these same terms will emerge from other masses in (7.2) 

as well.  We must be careful to recognize with the m,±  signs that the term in (8.3a) really 

represents both ( ) 5.5.5.2
−− −+ ii  and ( ) 5.5.5.2

−− +− ii , and that the term in (8.3b) is both 

( ) 5.5.5.2
−−++ ii  and ( ) 5.5.5.2

−−−− ii .  Using (9.8), the term from 84M  in (8.3a) evaluates to all of 

the four expressions: 
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while that from 85M  evaluates to: 
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Keep in mind that the terms such as ( ) 5.

110
−

−± , etc., to the extent that they are related to 

particle life, provide additional variation in permissible lifetimes.  For, if one uses the choice of 

( ) ( ) 5.5.

110110
−−

+−=−− i , then the term which is real will become imaginary and vice versa.  

And, there is further freedom in the ( )Ki±  factors in the above, indicating that there will be 

several permissible “lifetime / mass” combinations for particles which contain these sorts of 

unusual mathematical factors ( ) 5.5.5. −−+ BiAi . 

 

10.  Detailed Calculation for the SU(3) Mass Table for µ=0 and S=1 

 Finally, after all of this preparatory work, we are ready to calculate the “mass / lifetime 

table” in (7.2).  Specifically, we now take all of (8.1) for, 02 =µ , 1=S , and substitute them into 
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(7.2).  While this yields an 8x8 table, for space saving on the page, it will be more convenient to 

show the 7x7 table corresponding to the indexes 1,2,3,4,5,6,7 related to off-diagonal generators, 

and to separately show the terms related to the 8 generators which contain the ( ) 5.5.5. −−+ BiAi  

terms discussed in the prior section and so are more complicated.  The 7x7 table for the 1-7 

indexes, when extracted from (7.2) using (8.2), originates as: 
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Next, we wish to invert each term from ( ) 5.−
K  into ( ) 5.

K , which can be done using the 

i  relationships outlined following (7.2)  and (8.3) and especially 
)5.(2)5.( +++ = nn ii .  Even after 

these reductions, however, there is yet another bit of complex mathematics which we need to 

consider, because after reduction, not only does the above contain i , it also yields factors of 

25.4 ii =  and 
25.4 −− = ii , see, e.g., the 4-3 and 3-4 terms in which this is manifest even before 

these reductions.  We must now seek explicit expressions for these fourth root terms. 

 Following a similar procedure to that used in section 9, we define BiAii +≡= 25.4 .  

Then, we obtain A and B such that ( ) ( )iiBiA +±==+ 1
2

15.2
  The simultaneous equations to be 

solved are 
2

122 =− BA and 
2

12 =AB , and the solution obtained for both ( )i++ 1
2

1  and 

( )i+− 1
2

1  is: 
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
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2
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2
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2
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m

m

m

m

m

m

, (10.2) 

where the upper terms within the sets on the right use “+” and the lower terms use “–” in the 

22 ±  terms. 

 For 25.−i , similarly to what we did above, we now set ( ) ( )iiBiA −±==+ − 1
2

15.2
, thus: 
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m
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, (10.3) 

Comparing the four values (10.2) and (10.3) which are identical, we see that 25.25. −= ii  is its own 

self-inverse, though these are not equal to 1 or -1.  One might say that in this sense, 25.
i  is the “1” 

of imaginary mathematics. 

In addition, these fourth root terms always appear multiplying a term with 5.± , e.g., 

( )5.

27
968

2

125.

2
114 / ±= −ivgM  and ( )5.

27
968

2

125.

2
115 / ±= ivgM .  The root mathematical terms are 

( )5.25.
1±−

i  and ( ) 5.25.
1±i .  For the “+”, we have ( ) 25.5.25.

1
−− =+ ii  and ( ) 25.5.25.

1 ii = , which is 

simple.   But, for the “–” selection we have ( ) 75.25.5.25.
1 iiii ==− −−  and ( ) 25.125.5.25.

1 iiii ==− .  If, 

however, we multiply each of (10.2) and (10.3) by i, we obtain the exact same set of four values, 

and this will continue indefinitely.  That is, 
( ) 25.15.25.5. +++ = nn

ii  for ∞−−∞= KK 2,1,0,1,2n .  This 

half-power cycling allows us to replace ( )5.5.−± i  with 25.i , wherever it appears. 
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So, with the foregoing in mind, following term-by-term inversion from ( ) 5.−
K  into ( ) 5.

K , 

and expressing every term as a real fraction (and possible real root) times one of the foregoing 

complex factors, the mass / lifetime table (10.1) for the 1-7 indexes becomes: 
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while the ji 88 , MM  terms are: 
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( ) ( ) ( ) ( )( )

5.

2
1

88

5.

4

2
1

31,8

2
1

8,31

5.

45.5.5.5.5.5.5.5.5.5.5.5.
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,(10.8B) 

i.e., these would in the eighth row and column of (10.8A) if these was enough space on the page.  

Clearly, with their 2:1 ratios, the ( ) 5.5.5.2
−−± ii m  and ( ) 5.5.5.2

−−±± ii  factors, which we developed 

at length in section 9 (see (9.9) and (9.10)) are descended from the 
8λ  generator of SU(2). 

 We see that most of the foregoing mass factors in (10.8) are complex factors, i.e., that 

these masses have both real and imaginary portions and so have lifetimes which can be deduced 
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together with mass values.  Further, for many of the ijM , there are several mass values and 

lifetimes which can be deduced from each of the 64 terms, because of the various ±  factors 

together with the various i  and 4 i  expressions we have developed above.  One may think of 

this complex factor mathematics, as being the underlying mathematics of particle lifetimes.   

 All of the foregoing is determined up to the overall vg
2
1  factor for which g is the strong 

interaction coupling presuming we wish to apply this to QCD, and the vev v which, based on the 

real numeric ratios in the above which are within an order of magnitude of unity, is likely to be 

different than the v=246.220 GeV of electroweak interactions.  We leave this vev for now as an 

experimental parameter to be determined, and focus on characterizing the ratios and their 

complex coefficients in (10.8). 

 

11.  Preliminary Comparison with Observed Phenomenological Data 

 Studying (10.8), we see that that there are a total of nine (9) distinct real number ratios 

some of which further contain a real square or fourth root coefficient.  We now wish to simply 

see how the numeric ratios and lifetimes appear when these are all numerically evaluated. 

 There are a total of four different ratios which appear as a real number without any 

complex or imaginary coefficient, three of which appear in the diagonal of ijM .  These are: 

6335.
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242
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=




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
,  8357.

693

484
5.

=

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
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






, and 9852.

15957

15488
5.

=







. (11.1) 

The last of these appears in (10.8) not only as a real number, but also multiplied by i alone (and 

so is purely imaginary), and also multiplied by 
5.±i  which is a complex number. 

 Including ( ) 5.
15957/15488  noted above, there are two strictly imaginary numbers, with 

no real component.  These are: 

ii 9852.
15957

15488
5.

±=







±  and ii 9168.

31914

15488
3

5.

4 ±=







± . (11.2) 

These pure imaginary terms would represent a massless meson with finite lifetime.   

In addition to ( ) 5.
15957/15488  mentioned above which has several guises, there are two 

more ratios multiplied by 
5.±i .  With ( )ii +±= 1

2

15.  and ( )ii −±=−
1

2

15. , these are all, in all 

permitted sign combinations: 
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  The factor 25.i  multiplies only a single number, in the form: 
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see (10.2), and appears in numerous positions in (10.8A) (this is the single most prolific term).   

 Finally,  from (9.9) and (9.10): 
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and: 
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 Now, from all of the above, let us list all of the above in ascending order, based on the 

magnitude of the real component, and reintroduce the positions in which they appear in (10.8).  

Using { }BiA ±±  to represent BiA ±±  or BiA m±  in all four sign combinations, these 

dimensionless numbers are multiplied by vg
2
1  in all cases to arrive at a mass, and are: 
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 These are to be compared with the experimentally observed meson masses, and the goal, 

of course, is to obtain an exact fit with experiment.  We recall that these were generated by 

setting the parameters 0=µ  and 1=S  back in (8.1), and that while µ  is one of three physical 
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values permitted for 
3
42

,1,0=µ , the choice of 1=S  was to provide the simplest set of numbers 

though is likely an “unphysical” choice because it entirely turns off any energy contributions 

from the massless gauge bosons µ31KG .  Nonetheless, analogues of the above obtained with 

other S choices including perhaps 2=S  (see discussion preceding (8.1)), should be compared 

with experimental meson tables such as those at [1], with the goal of obtaining a precise match 

with observed data.  For reference, if one chooses 0=µ  and 2=S , then via (6.4), (6.5): 

{ } ( )


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





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





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ii

ii

ii

gv
Sµmp , (11.8) 

contrast (8.2).  We will not take (11.8) any further here, but will save that for a separate effort. 

 If one examines (11.7) above in relation to the experimental data for the light, unflavored 

(S=C=B=T=0) meson at [1], while the ratios for 0=µ  and 1=S do not match the data with 

precision, there are a number of features in the theoretical data of (11.7) in relation to the 

experimental data which are striking, and which suggest that the foregoing is on the correct 

course in relation to observable particle mass phenomenology. 

 First, keep in mind that although we started out with the Lagrangian density (2.1) to 

examine vector (spin 1) particles, we ended up making the approximation just before (2.13), that 

( )0,0,0,Mp ≅ν  so that we could approximate ( )1,1,1,0diag
2

−−−≅







+−

M

pp
g

νλ
νλ , and we have 

been using this ever since.  This enabled us to factor out the spin sum and focus on taking 

{ }[ ]Γ−Γ
−122Tr mp , see (1.17), which is still, however, for vector particles, an approximate result.  

Yet, for scalar particles, the usual propagator, modulo i, is, in fact, just ( )2/1 mpp −σ
σ

.  That 

means, in the current context, that (6.4), (6.5) for { } 122 −
− mp  is the exact propagator for scalar 

mesons, but only approximate for vector mesons due to the ( )0,0,0,Mp ≅ν  approximation for 

the latter.  Thus, it is the scalar mesons at [1] which should be the focus of our present attention.  

Additionally, since we have set 0=µ , which is the least energetic choice among 
3
42

,1,0=µ , 

and corresponding in fact merely to { } 12 −
p  with 0=m , and given our wish to explore whether 
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3
42

,1,0=µ  is somehow connected with generation replication, let us compare (11.7) with the 

light, unflavored (S=C=B=T=0) scalar (J=0) mesons in the listing at [1]. 

 From that listing, setting aside lifetimes for the moment, we find the following masses in 

MeV, also in ascending order: 

( )
( )

MeV141816
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±
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η

π

η

η

η

π

π

f

f

a

f

a

f

f

. (11.9) 

 Contrasting with (11.7), several features immediately emerge with clarity.  First, with 

0=µ  and 1=S , we obtain a total of 13 non-zero, real mass numbers.  The above shows a total 

of 16 observed experimental masses numbers, but if we look at (11.8) for 0=µ  and 2=S , 

which would then have to be employed in (7.2), it is apparent that this less simple choice of 

parameters will, in fact, generate a few more masses than we have already.  The point here, is 

that the number of distinct masses which emerge from theoretically-based (11.7), appears to be 

just about the right number of masses needed to fit the experimental data. 

 Second, we note that the spread from the lowest to highest mass in (11.7) is 11.286 to 1.  

The spread in the experimental data is 13.159 to 1.  So it is clear that not only do we generate the 

correct number of distinct mass values, we also generate the right overall theoretical spread of 

data points which matches closely to the experimental data, with a distribution of predicted data 

that does bear striking similarities to the overall character of the QCD meson mass spectrum. 



December 15, 2008 DRAFT 

37 

 

 Third, we note from (11.3) through (11.6) that the imaginary mathematics naturally 

generates a twofold ( 25.i  factor) and fourfold ( ( ) 5.5.5.2
−−± ii m and ( ) 5.5.5.2

−−±± ii  factor) 

“splitting” of the mass for similar underlying states.  Thus, some of the observed states should 

cluster into subsets of two or four masses.  In the experimental data, we also see a fourfold set of 

η  mesons, a fivefold set of 0f  mesons, and a twofold set of 0a .  This is off by one mass for the 

0f , but could perhaps be resolved by a suitable re-characterization of one of these 0f .  

Fundamentally, however, the imaginary math of (11.4) through (11.6) in particular, seems to 

suggest the right structure for the overall mass splitting of common underlying particle states.  

 Fourth, it seems very clear that the vev v is not be that of Fermi, i.e., 246.220 GeV.  

Rather, a contrast of (11.7) and (11.9) and knowledge of the strong coupling strength suggests 

that for SU(3) vev required to match the experimental data will turn out to be on the order of 1 

GeV, which motivates us to entertain the prospect that perhaps the so-called “ QCDΛ ” may 

actually be the vacuum expectation for SU(3). 

 

12.  Conclusion 

 Fundamentally, all of the results here flow from a single observation, coupled with an 

extension of the spontaneous symmetry breaking which is successfully utilized in SU(2), to 

larger Yang-Mills groups.  The single observation, is that the term 2
mpp −σ

σ  must be treated in 

any given Yang-Mills SU(N) theory as an NxN matrix, with σσ i

i pTp = , and therefore inverted 

according to established principles for matrix inversion, as ( ) 12 −
− mpp σ

σ , rather than simply 

forced into a denominator as the reciprocal ( )2/1 mpp −σ
σ .  In particular, in section 2, we saw 

that in SU(2) and by extension SU(2)xU(1), this sort of simple reciprocal inversion is permitted 

and is implicitly utilized in established electroweak theory, but only due to the special properties 

of SU(2).  This does not, however, extend to higher order Yang Mills groups.  Thus, all else is 

simply a detailed calculation and utilization of the SU(3) inverse ( ) 12 −
− mpp σ

σ .  Of definite 

interest, in the course of carrying out the 2
mpp −σ

σ  inversion in this manner, all of the 

problems normally associated with propagator formation including the need to work around 

infinite poles, simply evaporate.  Even a  matrix ( ) 1−

σ
σ

pp ,  which is what is represented by the 
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0=µ  example that we worked through in detail here for SU(3), and which yielded all of the 

finite mass numbers in (11.7), inverts without difficulty and without the need for any special 

measures. 

 The extension of spontaneous symmetry breaking which we have employed and would 

propose to employ for larger groups as well, which was detailed generally in section 3 and 

applied specifically to SU(3) in section 4, gives mass to the gauge bosons which are “new” to 

any SU(N) when one moves up from SU(N-1), while leaving massless, all the gauge bosons 

associated with the SU(N-1) subgroup.  Thus, the SU(N-1) vacuum remains unbroken, and so 

cam later be broken with a different vev.  This provides for any SU(N), just enough degrees of 

freedom to properly give mass and a longitudinal polarization state to its “new” gauge bosons, 

while leaving over one degree of freedom for the Higgs field.  However, once we are using 

SU(3) or higher, the masses of the gauge bosons are not synonymous with the meson masses 

which arise from the inverse term ( ) 12 −
− mpp σ

σ .  This is why the gauge bosons in SU(3) appear 

to be confined, i.e., not directly observed, while only massive mesons are observed.  In this 

process, we fill the “mass gap” by giving rise to over a dozen meson masses >0 just for the 

parameter choice 0=µ , see (11.7), with a second and third set of >0 masses arising from the 

other permitted quantum numbers 
3
4,1=µ , which one would wish to examine to see if a 

foundation for generation replication might be obtained.  While more exploration is needed, and 

in particular more complicated but possibly physically on-target parameterizations such as 2=S  

should also be calculated out, optimally by computer so large sets of parameters can be tried for 

optimum fit with experimental data, the general approach laid out herein does seem to point in a 

fruitful direction. 

 The question of confinement is perhaps best understood in the context of Quantum Field 

Theory, and for simplicity, with what Zee refers to in Appendix A of [4] as the “Central Identity 

of Quantum Field Theory”: 

( ) JKJ
J

VVJK

eeeD
⋅⋅








−∞+

∞−

−⋅+⋅⋅− −

=∫
1

2

1

2

1

δ

δ
φφφφ

φ CCCC . (12.1) 

Above, the exponent on the left-hand-side of this Gaussian-based identity represents a 

Lagrangian / action such as that in (2.1), which includes 2
mpp −σ

σ  in the K term, and in which 

interactions of higher than second order in the field are subsumed into ( )φV .  The exponent 
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JKJ ⋅⋅ −1  on the right hand side, represents the invariant amplitude for which an example is 

shown in (2.16), and 1−K  represents ( ) 12 −
− mpp σ

σ  which has been central to the development 

here, which is multiplied by a spin sum suitable to whatever particles are under consideration, 

and which especially includes non-zero observed masses ijM .   In this context, the question of 

confinement is summarized very simply: We cannot directly observe anything on the left hand 

side of the Central Identity(12.1).  We do directly observe the masses occurs on the right hand 

side of the Central Identity.  Only in the special case of SU(2) or SU(2)xU(1), does it look as if 

we are observing the mass in 2
mpp −σ

σ  on the left hand side, because these turn out only in this 

special case to be identical with the ijM  garnered from right hand side, see (2.16).  But it is the 

right hand side which is the mainspring of our direct observation of particle mass.  In general, for 

any SU(N) with N>2, masses on the left hand side of (12.1) are “confined” from being directly 

observed, and what is on the right hand side is what we can and do directly observe. 

 Beyond all of the foregoing, the validation or falsification of this approach rests in 

matching the meson masses which are predicted, with those which are observed.  Whether this 

approach is or is not eventually validated, it certainly puts up numerous prospects for numeric 

mass prediction which can be matched to phenomenological data, witness the simplest-case 

example of (11.7). 

In this regard, it bears emphasis that the masses emergent from (11.7) and more generally 

from (7.2) via (6.4) and (6.5) are, in the context of SU(3), completely correspondent with what in 

electroweak theory become the  ±
W  mass in (2.16), via the right hand side of (12.1).  

Hopefulness that the observed QCD mesons can be theoretically characterized by a suitable 

choice of the parameter S in combination with the theoretically-imposed, three-valued quantum 

number 
3
4,1,0=µ , rests on this carefully-constructed correspondence to the demonstrably-

successfully theory of electroweak interactions. 
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