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1.  Introduction 

 It has been understood at least since Galileo’s refutation of Aristotle which legend 

situates at the Leaning Tower of Pisa, that heavier masses and lighter masses similarly-disposed 

in a gravitational field will accelerate at the same rate and reach the ground after identical times 

have elapsed.  Physicists have come to describe this with the principle that the “gravitational 

mass” and the “inertial mass” of any material body are “equivalent.”  As a material body 

becomes more massive and so more-susceptible to the pull of a gravitational field (back when 

gravitation was viewed as action at a distance), so too this increase in massiveness causes the 

material body in equal measure to resist the gravitational pull.  By this equivalence, the result is a 

“wash,” and so with the neglect of any air resistance, all the bodies accelerate and fall at the 

same rate.  (The other consequence of Galileo’s escapade, is that it strengthened the role of 

experimental testing, in relation to the “pure thought” upon which Aristotle had relied to make 

the “obvious” but untested and in fact false argument that heavy objects should fall faster.  In this 

way, it spawned the essence of what we today know as the scientific method which remains a 

dynamic blend of thought and creativity, with experience and cold, hard numbers derived from 

measurement of masses, lengths, and times.) 

 Along his path to developing the General Theory of Relativity (GTR), Albert Einstein 

made a brief stop in 1911 in an imaginary elevator, to conduct a gedanken in which he concluded 

that the physical experience of an observer falling freely in a gravitational field before terminally 

hitting the ground is no different from what was commonly thought of as Newton’s inertial 

motion in which a body in motion remained in motion unless acted upon by a “force.”  (GTR 

later showed that this was not quite true, the “asterisk” to this insight arising from the so-called 

tidal forces.)  And, he concluded that the force one feels standing on the floor of an elevator in 

free fall to which a constant force is then applied, is no different from the force one feels when 

standing on the surface of the earth. 
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 The General Theory of Relativity, in the end, captured inertial motion and its close cousin 

of free-fall motion in a gravitational field, in the most elegant way, as simple geodesic motion in 

a curved geometry along geodesic paths which coincide precisely with the paths one observes for 

bodies moving under gravitational influences.  This was a triumph of the highest order, as it 

placed gravitational theory on the completely-solid footing of Riemannian geometry, and became 

the “gold standard” against which all other physical theories are invariably measured, even to 

this day.  (“Marble and wood” is another oft-employed analogy.) 

 However, the question of “absolute acceleration,” that is, of an acceleration which is not 

simply a geodesic phenomenon of unimpeded free fall through a swathe carved out by geometry, 

but rather one in which an observer actually “feels” a “force” which can be measured by a 

“weight scale” in physical contact between the observer and that body which applies the force, is 

in fact not resolved by GTR.  To this day, it is hotly-debated whether or not there is such a thing 

as “absolute acceleration.”  Surely, the forces we feel on our bodies in elevators and cars and 

standing on the ground are real enough, but the question is whether there is some way to 

understand these forces – which are impediments to what would otherwise be our own geodesic 

free fall motion in spacetime under the influence of gravity and nothing more – as geodesic 

forces in their own right, simply of a different, supplemental, and perhaps more-subtle character 

than the geodesics of gravitation.  That is the central question to be examined in this lab note. 

 If we think of the “gravitational mass” of a material body more generally as its 

“interaction mass” for the specific circumstance in which the “interaction” is “gravitational,” 

then the answer to the question whether the real forces we feel when our bodies are “absolutely” 

accelerated might still be described in terms of geometric geodesics, may still lurk amidst 

Galileo’s legendary escapade at Pisa, but with a twist.  In this situation, the “interaction mass” 

of a material body is now inequivalent to its “inertial mass,” because that interaction is now 

“electrical” rather than “gravitational.”  Here, Aristotle has his day, because “electrically-

heavier” bodies do fall faster than “electrically-lighter” ones. 

 How do electrical masses now come into play?  When we fail to maintain our 

gravitational geodesic motion by failing to morph through the floor of the elevator, or when we 

fail to continue our gravitational free fall by not falling unimpeded through the earth’s surface, it 

is because we are stopped by the collective electrical repulsion between billions of electrons in 

our bodies and billions more in the elevator floor or the earth’s ground.  It is because the 
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electrical interaction has now trumped the gravitational interaction and taken us off of our 

gravitational geodesics.  Or, perhaps, if we can obtain a geometric insight into electrodynamics, 

it is because we are now leaving the gravitational geodesic, and the atoms in our body are instead 

embarking upon a different sort of geodesic path which now coincides with the path that has long 

been observed as the Lorentz force motion of a charged mass in an electromagnetic field. 

 In light of the quantum revolution of the 20th century, one other consideration is in order.  

In this discussion, we are talking not about quantum phenomenon, but about bulk phenomenon 

which lend themselves to completely classical description.  In the same way that a bulk material 

body follows a geodesic path through gravitation, the question we raise is whether bulk electrical 

bodies, or large numbers of electrons in an electric field, can also be understood, via their 

Lorentz force motion, to be following geodesic paths made of “marble” no less fine than the 

marble with which General Relativity directs the paths of material bodies through spacetime 

geometry in a manner that coincides precisely with what we observe and measure to be a 

gravitational path.  We want to understand why we don’t fall through the elevator or through the 

earth.  Not only do we want to understand this in a way that avoids contradicting the geodesic 

principles of gravitation, we want to do so in a way that seamlessly extends these principles in a 

totally-self consistent way, into the electromagnetic arena. 

 Five-dimensional theories (or higher), have frequently been a foundation upon which to 

try to merge classical gravitation with classical electrodynamics.  Kaluza and Klein began the 

trend, Einstein looked favorably on the effort, many others have followed, but to this day, there 

is as yet no theory which has been fully compelling in all aspects, and which at the same time, is 

motivated to a fifth dimension in a completely natural way, conservatively based on solid 

principles of observational physics which are already firmly-established. 

 

2.  Using Dirac’s “Gamma-5” to Motivate a Fifth, Timelike Dimension 

 One of the most important connections in all of physics is given by the Dirac 

relationship: 

{ } µνµννµ ηγγγγ ≡+2
1 , (2.1) 

whereby the Dirac µγ  matrices, 3,2,1,0=µ , are defined so as to reproduce the Minkowski metric 

tensor ( ) ( )1,1,1,1diag −−−+=µνη  under anticommutation. This relationship not only underlies 



4 

Dirac’s equation, but also ensures that the Klein-Gordon equation applies to fermions as well as 

bosons.  It is firmly established in all respects, and certainly must be regarded as one of those 

physical relationships which is made of “marble” over wood. 

 Also made of “marble,” is the axial Dirac matrix first motivated by Weyl: 
32105 γγγγγ i≡ , (2.2) 

which is defined from matrix-multiplying the other four Dirac matrices, and which has a well-

established and rigorously-observed physical meaning in relation to the left- and right-chiral 

handedness of elementary fermions.  We know that when the µγ  are sandwiched between Dirac 

spinors in the form ψγψ µµ =j , the resulting current source density µj  (also thought of as a 

probability and flux density) transforms as a four-vector in spacetime.  We also know that 

ψγψ 55 ≡j  is a “pseudo-scalar.”  Though there are five such Dirac gamma matrices, only four 

these are multiplicatively independent. 

 We will now motivate a five-dimensional spacetime, based on (2.1) and (2.2), in the 

following way:  The five-dimensional spacetime we employ will be one which is defined as a 

geometry in which µj  and 5j , taken together, all transform together as a five-vector 

( )5, jjj µ≡Μ , with 5,3,2,1,0=Μ .  In this five-dimensional space, we employ uppercase Greek 

indexes.  We maintain the lower case 3,2,1,0=µ  for the usual 4-dimensional spacetime 

subspace. 

 The metric tensor for such a five-dimensional geometry, must therefore be formed from 

the anticommutator of all five of the Μγ , similarly to (2.1).  That is, if ( )5, jjj µ≡Μ  is to 

transform as a five-vector, then we must define a five-dimensional, 5x5 Minkowski metric tensor 

according to: 

{ }ΜΝΝΜΜΝ +≡ γγγγη 2
1 . (2.3) 

Given the well-known anticommutation properties of the five Μγ , one can readily deduce that 

( ) ( )1,1,1,1,1diag +−−−+=ΜΝη , and that Ν≠Μ=ΜΝ for0η .  The usual Minkowski metric tensor 

µνη  is of course preserved in the 16 = 4x4 components of ΜΝη  for which 3,2,1,0,, ==ΝΜ νµ .  

Importantly, because 155 +=η , we find that this fifth dimension has a timelike, rather than a 
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spacelike signature.  Put succinctly: this five-dimensional geometry consists of two timelike and 

three spacelike dimensions.   

 We next define infinitesimal coordinate intervals in the usual way, including a fifth 5dx  

interval, that is, ( )53210 ,,,, dxdxdxdxdxdx ≡Μ .  Because 5γ  is known as the “axial” matrix and 

because it is associated with a timelike metric signature as noted just above, we shall refer to 5x  

as the “axial time” coordinate, and will continue to refer to 0x  as the “ordinary time” coordinate.   

The 321 ,, xxx  coordinates of course retain their role as ordinary space coordinates. 

 Geometrically, in light of the two timelike dimensions, it will often be very useful to 

regard time not as a “time line” but as a “time plane.”  Thus, following Feynman, we might not 

only think about worldlines which move forwards and backwards in time, but also which move 

sideways in time, and at various angles through the time plane.  In fact, it is particularly helpful if 

one draws a vertical coordinate axis for ordinary time 0x  orthogonal to a horizontal coordinate 

axis for axial time 5x , to represent the “time plane.”  Then for material bodies “at rest,” 

0321 === dxdxdx , one may speak about the “angle” at which their worldlines move through 

this time plane.  As we shall see, this may lead to a solely-geometric way to understand rest 

mass, electric charge, and electrical Lorentz Force motion, as geodesic motion through curved, 

non-Euclidean geometry. 

 The next step is to specify a metric interval Τd  for this five-dimensional spacetime.  One 

might regard this as a “flat” spacetime and so define ΝΜ
ΜΝ≡Τ dxdxd η2 .  However, if our 

objective is to understand the motions of electrical bodies on the basis of geodesic paths through 

a geometry, we must take one final step, and allow this five-dimensional geometry to be a 

curved, non-Euclidean geometry just like that which is used in GTR.  Thus, we shall establish a 

metric tensor ΜΝΜΝΜΝ += hg κη  just as in GTR, and specify the weak-field limit according to 

ΜΝΜΝ → ηg , i.e., 0→ΜΝh .  We further maintain the usual interval in the 4-dimensional 

spacetime subspace, using νµ
µντ dxdxgd =2 , and we thereby specify metric intervals in this 5-

dimensional spacetime with axial time, according to: 

55
55

5
5

5
5

2

55
55

5
5

5
5

2

dxdxgdxdxgdxdxgd

dxdxgdxdxgdxdxgdxdxgdxdxgd

+++=

+++=≡Τ ΝΜ
ΜΝ

µ
µ

ν
ν

µ
µ

ν
ν

νµ
µν

τ
. (2.4) 
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 (As an aside, for completeness, having extended ΜΝΜΝ → gη  to incorporate curvature 

and hence gravitation, we should also return to (2.3), and redefine the Dirac Gamma matrices so 

as to incorporate these curvatures as well.  Thus, we now define a new set of Dirac matrices 

( )ΜΜΓ x  from the contravariant ( )ΜΜΝ xg , according to: 

{ } ΜΝΜΝΝΜ ≡ΓΓ+ΓΓ g2
1 . (2.5) 

These ΜΓ , which are now fields rather than constant matrices, and which approach the usual Μγ  

in the weak-field limit, now implicitly include gravitational effects.  When employed in Dirac’s 

equation, these ΜΓ  lead to some very interesting ways to interpret the Schwinger magnetic 

moments as indicative of gravitational effects near the Planck length which give clues as to the 

true “size” of the elementary fermions, and these may also bear a relationship to the 
µµµ γ Λ+=Γ  used in perturbation theory to represent non-divergent perturbative corrections. 

But these are topics for an entirely different paper.  Let’s return to the main thread of discussion 

by returning to (2.4).) 

 

3.  A Possible Geometric Interpretation of Rest Mass 

 In applying (2.4), we extend all of the customary GTR relationships from four to five 

dimensions.  Thus, ΝΜΜΝ = gg  is a symmetric tensor, inverses are specified by Σ
Μ

ΝΣ
ΜΝ = δgg  

(thus the ΜΝg  and ΜΝg  are used to lower and raise indexes), the covariant derivative of the 

metric tensor is defined by 0; ≡ΣΜΝg , the 5-D Christoffel connections are 

( )ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΣΤ
Μ −+=Γ ,,,2

1 gggg , hence ΤΣ
Μ

ΣΤ
Μ Γ=Γ , and the covariant derivative of a first 

rank vector ΜA  is Α
ΑΣ

Μ
Σ

Μ
Σ

Μ Γ+= AAA ,; . 

 Now, let’s use algebraic manipulation to rewrite (2.4) in both of the following forms: 

ΤΤ
−

ΤΤ
−

ΤΤ
−=

Τ d
dx

d
dx

g
d
dx

d
dx

g
d
dx

d
dx

g
d
d 5

5

5

5

55

552

2

1
µ

µ

ν

ν
τ

 and (3.1) 

��
�

�
��
�

�

ΤΤ
−

ΤΤ
−

ΤΤ
−−

ΤΤ
=

d
dx

d
dx

g
d
dx

d
dx

g
d
dx

d
dx

g
d
dx

d
dx

g
55

55

5

5

5

510
µ

µ

ν

ν

νµ

µν . (3.2) 

Using a velocity four-vector τµµ ddxu /≡ , these can be combined to obtain: 
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( )110 2

2

2

2

−
Τ

=��
�

�
��
�

�
−

Τ
= µ

µ
νµ

µν
τ

ττ
τ

uu
d
d

d
dx

d
dx

g
d
d

. (3.3) 

 If we define a momentum four-vector µµ mup ≡  for a mass m in the usual way, and 

contrast (3.3) to the equation ( ) 0122 =−=− µ
µ

µ
µ uummpp  for the energy-momentum of an on-

shell mass m , we see that Τdd /τ  in (3.3) plays a role identical to that of the mass m  in 

( ) 012 =−µ
µuum .  In the mass shell equation, m is of course introduced “by hand,” because the 

most one can deduce from the four-dimensional metric equation νµ
µντ dxdxgd =2  is 

01 =−µ
µuu ; then we need to multiply through by a mass m which we simply take out of “thin 

air” based on our empirical knowledge that masses exist in nature.  In contrast, in (3.3), the 

Τdd /τ  multiplier of 01 =−µ
µuu  arises totally out of the five-dimensional geometry, with 

nothing introduced “by hand.”  Τdd /τ  is marble, and m is wood. 

 We can capture this very-telling correspondence, by writing: 

Τ
∝

d
d

m
τ

. (3.4) 

That is, in some way to be further determined, the rest mass of a material body appears to be 

proportional to the ratio of τd  to Τd , and so may have a simple geometric foundation based on 

the trajectory of a worldline in the 50 xx −  time plane.  Now, we are ready to examine the 

geodesics of this five-dimensional geometry. 

 

4.  The Geodesic Equation in Five Dimensions 

 The five-dimensional calculation to follow is analogous to one way of deriving the 

geodesic equation in four dimensions, though we will in any event carry out the calculation in 

full a) to help the reader review the basic role of the metric equation as the first integral of the 

equation of motion b) to convince the reader that the 5-D geodesic equation is in fact correct, and 

c) to establish a careful discipline about working in five dimensions, making sure that all of our 

calculations are carried out in a 5-covariant rather than only a 4-covariant manner. 
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 We return to the metric equation (2.4), and now rewrite this, again via trivial algebraic 

rearrangement, as: 

ΤΤ
=

ΝΜ

ΜΝ d
dx

d
dx

g1 . (4.1) 

Taking the covariant derivative of each side, employing 0; =ΣΜΝg , renaming indexes, 

commuting, and using ΝΜΜΝ = gg , enables us to then write: 

Τ��
�

�
��
�

�

Τ
=

Ν

Σ

Μ

ΜΝ d
dx

d
dx

g
;

0 . (4.2) 

The covariant derivative ��
�

�
��
�

�

Τ
Γ+��

�

�
��
�

�

Τ
=��

�

�
��
�

�

Τ

Α

ΑΣ
Μ

Σ

Μ

Σ

Μ

d
dx

d
dx

d
dx

,;

, which we substitute into (4.2).  

After some rearranging of terms, and assuming that 0≠ΜΝg , we can write: 

ΤΤ
Γ+

ΤΤ
=

ΝΑ

ΑΣ
Μ

ΜΝ

Σ d
dx

d
dx

d
dx

d
dx

dx
d

0 . (4.3) 

Finally, we contract the Σ  and Ν  indexes, do some index renaming, and obtain the geodesic 

equation in 5-Dimensions: 

02

2

=
ΤΤ

Γ+
Τ

ΤΣ

ΣΤ
Μ

Μ

d
dx

d
dx

d
xd

. (4.4) 

This looks just like the four-dimensional equation, but for the indexes summing over all five 

dimensions rather than four, and the Τd  rather than τd  in the denominators.  But, we can 

multiply through fully by 22 / τddΤ , and rewrite (4.4) as: 

02

2

=Γ+
ΤΣ

ΣΤ
Μ

Μ

τττ d
dx

d
dx

d
xd

. (4.5) 

Now, let us work with (4.5) above. 

 Equation (4.5) is a set of five independent equations.  Let’s separate it into the four 

spacetime equations represented by: 

02

2

=Γ+
ΤΣ

ΣΤ
τττ

µ
µ

d
dx

d
dx

d
xd

 (4.6) 
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and the single axial-dimension equation: 

05
2

52

=Γ+
ΤΣ

ΣΤ
τττ d

dx
d
dx

d
xd

. (4.7) 

Equation (4.6) is for 2

2

τ

µ

d
xd

, which is the observed acceleration of a worldline in the observed 

four dimensions of spacetime.  But, the five-dimensional summation in 
ττ

µ

d
dx

d
dx ΤΣ

ΣΤΓ  in (4.6) 

adds some new terms to the usual gravitational geodesic equation.  Specifically, (4.6) expands to: 

0
55

55

5

5

5

52

2

=Γ+Γ+Γ+Γ+
τττττττττ

µ
τ

τ
µ

σ

σ
µ

τσ

στ
µ

µ

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
xd

 (4.8) 

which on account of ΤΣ
Μ

ΣΤ
Μ Γ=Γ , we consolidate with some index renaming to: 

02
55

55

5

52

2

=Γ+Γ+Γ+
τττττττ

µ
τ

τ
µ

τσ

στ
µ

µ

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
xd

 (4.9) 

5.  Geodesic Motion of a Charged Mass in an Electromagnetic Field 

 Now, it is time to contrast (4.9) above to the Lorentz Force Law when taken together with 

the gravitational geodesic equation.  This is, for example, set forth in equation (20.41) of 

Gravitation by Misner, Wheeler and Thorne: 

02

2

=−Γ+
ττττ

τ

τ
µ

τσ

στ
µ

µ

d
dx

F
m
q

d
dx

d
dx

d
xd

. (5.1) 

At the outset, let us set aside the term 
ττ

µ

d
dx

d
dx 55

55Γ  in (4.9).  We can do, this, for example, by 

setting 055 =Γµ .  We also move the τddx /5  in front of the 5τ
µΓ , so that (4.9) now becomes: 

02 5

5

2

2

=Γ+Γ+
τττττ

τ

τ
µ

τσ

στ
µ

µ

d
dx

d
dx

d
dx

d
dx

d
xd

 (5.2) 

Now, we contrast (5.1) directly with (5.2).  The term 
ττ

τ

τ
µ

d
dx

d
dx

5

5

2 Γ  in (5.2) is the “marble” of 

geometry, while the corresponding term 
τ

τ

τ
µ

d
dx

F
m
q−  is the “wood” of an empirically-derived 
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relationship.  However, comparing these terms, we can give a totally geometric footing to the 

Lorentz force law if we note the proportionalities: 

τd
dx

m
q 5

∝− , and (5.3) 

52 τ
µ

τ
µ Γ∝F . (5.4) 

Combining (3.4), Τ∝ ddm /τ , with (5.3), additionally yields: 

Τ
∝−

d
dx

q
5

 (5.5) 

In fact, if we substitute the proportionalities in (5.3) and (5.4) into (5.1) as if they were equalities, 

then the geodesic equation (5.2), totally-based in geometry, is the Lorentz force law.  Lorentz 

force motion now appears to be motion along a geodesic, just like gravitational motion.  

Additionally, this geodesic motion appears to introduce an absolute acceleration, and hence 

“force,” because of the inequality of electrical and inertial mass, which via (5.3) has its origins in 

the geometric statement τddx ≠5 .  This geometric statement, is now at the root of the “force,” 

and hence “absolute acceleration,” experienced by a charged mass in an electromagnetic field.  

Yet, this force and absolute acceleration, still is a form of geodesic motion described by (5.2), 

and so rests fully upon the “marble” of geodesic motion through curved geometry. 

 In fact, let’s take this geometric understanding of inertial mass and electric charge even a 

step further.  Consider a material body viewed at rest, by setting 0321 === dxdxdx , hence 

0
00 dxgd =τ .  Then, according to (2.4): 

55
55

50
05

05
50

00
00

2 dxdxgdxdxgdxdxgdxdxgdxdxgd +++=≡Τ ΝΜ
ΜΝ . (5.6) 

Further, take the weak field approximation where ΜΝΜΝ ≈ηg , 0dxd ≈τ .  Now, (5.6) becomes: 

( ) ( )25202 dxdxd +≈Τ . (5.7) 

Draw 0x  and 5x  as orthogonal axes, where 0x  is vertical and 5x  is horizontal (sideways axial 

time).  From (5.7), Τd  is clearly the hypotenuse.  Define an angle Θ  such that 50 /tan dxdx≡Θ .  
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Now, in this weak field ΜΝΜΝ ≈ηg  rest frame 0321 === dxdxdx , we can write (3.4), (5.3), 

and (5.5), respectively, as: 

( ) ( )
Θ=

+
≈

Τ
≈

Τ
∝ sin

2520

00

dxdx

dx
d
dx

d
d

m
τ

. (5.8) 

Θ≡≈∝− cot0

55

dx
dx

d
dx

m
q

τ
 (5.9) 

( ) ( )
Θ=

+
≈

Τ
∝− cos

2520

55

dxdx

dx
d
dx

q  (5.10) 

 In this way, gravitational and inertial mass, as well as electric mass (charge), obtain a 

totally geometric interpretation in terms of the angle of a worldline through the time plane.  

Referring especially to (5.9), movement through ordinary time 0x  contributes to gravitational 

and inertial mass, movement through axial time 5x  contributes to electrical mass, and real 

“force” and “absolute acceleration” arises from angular movement through the time plane in 

which a worldline projects both 0x  and 5x  components. 

 

6.  Symmetric Gravitation and Antisymmetric Electrodynamics: Can they be Compatible?  

 Now, let us turn back to the association 52 τ
µ

τ
µ Γ∝F  in (5.4).  One of the fundamental 

difficulties which has been encountered by physicists attempting to unify classical 

electrodynamics with GTR, is that the former is an antisymmetric field theory while the latter is 

symmetric.  How to combine “oil” and “water” in this way has perplexed physicists for over a 

century.  So, the question arises, does the relationship 52 τ
µ

τ
µ Γ∝F  provide a path for a seamless 

and internally-consistent union of these two theories? 

 As it stands, τ
µF  is a mixed tensor, and it would be better to raise this into contravariant 

form where we can clearly examine the consequences of having an antisymmetric field strength 

tensor νµµν FF −= .  However, now that we are in 5-D, we have to be careful that we are raising 

indexes properly, using the full ΜΝg  and not just its four-dimensional subset.  To do this, we 

need to recognize that in 5-D, (5.4) should be generalized to 52 Τ
Μ

Τ
Μ Γ∝F , which means that 
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there are four additional, independent components in Τ
ΜF  (assuming we maintain an 

antisymmetric field strength by requiring that ΝΜΜΝ −= FF ).  We are not at this juncture 

concerned about what these new components might be; the only reason for using Τ
ΜF  rather 

than τ
µF  is to make sure we handle the raising of the lower index properly in 5-dimensions. 

 So, going into 5-D, and using ( )ΑΤΤΑΑΤ
ΜΑ

Τ
Μ −+=Γ ,5,55,2

1
5 gggg , we rewrite (5.4) as: 

( )ΑΤΤΑΑΤ
ΜΑΤΝ

Τ
ΜΤΝ

Τ
ΜΤΝΜΝ −+=Γ∝= ,5,55,2

1
52

1
2
1 ggggggFgF . (6.1) 

Although unconcerned for now about the extra components in ΜΝF , we shall follow the 

customary path and regard ΜΝF  as a totally-antisymmetric tensor, thereby extending this basic 

property of electrodynamics to these extra components, whatever they may be.  That is, we 

continue to employ the condition ΝΜΜΝ −= FF . 

 Combining ΝΜΜΝ −= FF  with (6.1) now lets us write: 

( ) ( )ΑΤΤΑΑΤ
ΝΑΤΜ

ΑΤΤΑΑΤ
ΜΑΤΝΝΜΜΝ −+−=−+∝−= ,5,55,,5,55, ggggggggggFF . (6.2) 

This lets us express the antisymmetric field strength relation ΝΜΜΝ −= FF  completely in terms 

of certain relationships involving first derivatives of the gravitational potential, as expressed via 

the metric tensor.  Now, let us reduce this. 

 From (6.2), we can rename indexes and use the symmetry of the metric tensor to write: 

( ) ( )ΤΑΑΤΤΑ
ΝΑΤΜ

ΤΑΑΤΤΑ
ΝΑΤΜ −+−=−+ ,5,55,,5,55, gggggggggg , (6.3) 

which further reduces with some index changes and the symmetry of the metric tensor to: 

05, =ΣΤ
ΤΝΜΣ ggg . (6.4) 

This is an alternative way of saying that ΝΜΜΝ −= FF . 

 We can further simplify this using the inverse relationship Σ
Ν

ΣΤ
ΤΝ = δgg , which we can 

differentiate with respect to the 5th dimension to obtain ( ) 05,5,5, =+= ΣΤ
ΤΝ

ΣΤ
ΤΝ

ΣΤ
ΤΝ gggggg , i.e., 

ΣΤ
ΤΝ

ΣΤ
ΤΝ −= gggg 5,5, .  This can then be used to reduce (6.4) to the very simple: 

 

05, =ΜΝg . (6.5) 
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The above, 05, =ΜΝg , is a purely geometric statement completely equivalent to ΝΜΜΝ −= FF .  

The symmetric field theory of gravitation is fully compatible with the antisymmetric field theory 

of electrodynamics, so long as we require that 05, =ΜΝg . 

 

7.  Do Maxwell’s Equations Become Components of Einstein’s Gravitational Field Equation? 

 We have shown the possibility that Lorentz force motion might be described as simple 

geodesic motion in a five-dimensional spacetime with axial time, and that the inequality of 

electrical and inertial mass which causes one to “feel” a force and prevents one from falling 

through the floor of Einstein’s elevator or into the earth’s core, may well emanate from the 

simple proportionality 
τd

dx
m
q 5

∝− .  But equations of motion are only one part of a complete field 

theory.   The other part is a specification of how the “sources” of that theory influence the 

“fields” originating from those sources.  In a complete theory, the equations of motion then 

describe motion through the fields originating from the sources. 

 To complete the field theory which we have motivated thus far, one therefore would also 

need to also examine the Einstein equation in five dimensions: 

RRT Ν
Μ

Ν
Μ

Ν
Μ −=− δκ 2

1 , (7.1) 

as well as the Riemann Identity: 

0=++ ΜΒΝΑΜΑΒΝΜΝΑΒ RRR , (7.2) 

to see if among their new axial (index = 5) components, one might find the Maxwell equations 

µ
µνν

;Fj = , and 0;;; =++ νσµµνσσµν FFF . 

 In five dimensions, one would of course specify the Riemann tensor in the usual way, 

albeit with an extra “5” index.  That is: 

ΣΝ
Α

ΒΜ
Σ

ΣΜ
Α

ΒΝ
Σ

ΜΒΝ
Α

ΝΒΜ
Α

ΒΜΝ
Α ΓΓ−ΓΓ+Γ+Γ−= ,,R . (7.3) 

Now, let’s consider the 5=Μ  component of this equation, that is: 

ΣΝ
Α

Β
Σ

Σ
Α

ΒΝ
Σ

ΒΝ
Α

ΝΒ
Α

ΝΒ
Α ΓΓ−ΓΓ+Γ+Γ−= 555,,55R . (7.4) 

The second term in the above, with explicit substitution of ΒΝ
ΑΓ  is given by: 
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( )[ ] 0
5,,,,2

1
5, =−+=Γ ΣΒΝΒΝΣΝΣΒ

ΑΣ
ΒΝ

Α gggg . (7.5) 

This is equal to zero, as a consequence of 05, =ΜΝg , equation (6.5), which is the same thing as 

ΝΜΜΝ −= FF , and because ordinary derivatives commute.  Thus, by virtue of ΝΜΜΝ −= FF  

a.k.a. 05, =ΜΝg , (7.4) simplifies to: 

ΣΝ
Α

Β
Σ

Σ
Α

ΒΝ
Σ

ΝΒ
Α

ΝΒ
Α ΓΓ−ΓΓ+Γ−= 55,55R , (7.6) 

consisting of only three terms. 

 Now, we make use of  Τ
Μ

Τ
Μ ∝Γ F2

1
5  generalized from (5.4), to rewrite (7.6) as a 

proportionality, in terms of the field strength tensor, as such: 

ΝΒ
Α

Β
Σ

ΣΝ
Α

Σ
Α

ΒΝ
Σ

ΝΒ
Α

ΝΒ
Α −=Γ−Γ+−∝ ;,5 FFFFR . (7.7) 

What is absolutely fascinating, and of enormous eventual import, is that this expression for the 

mixed field strength tensor Β
ΑF  is identical to its gravitationally-covariant derivative ΝΒ

Α
;F .  

From here, we can get to both of Maxwell’s equations almost immediately. 

 First, let’s contract (7.7) down to the Ricci tensor, and use the proportionality liberally to 

eliminate the minus sign, as such: 

ΒΑΒ
Α

ΑΒ
Α

Β =∝= jFRR ;55 , (7.8) 

where Βj  is the five-dimensional, covariant electric source current.  Because 0; =Α
ΒΜg , this can 

be raised into mixed form with some index renaming as: 
ΜΜΜΜ

Σ
ΣΜΜ ==+=∝ jFFFFR σ

σ
σ

σ
;5;

5
;;5 . (7.9) 

Note that 05;
5 =ΜF , and so σ

σ
;;

Μ
Σ

ΣΜ = FF , because 05;
5

2
1

5;5
5 =∝Γ ΑΑ F  by virtue of 05, =ΜΝg , 

that is,  ΝΜΜΝ −= FF . 

 Now, we can return to Einstein’s equation (7.1), for µ=Μ  and 5=Ν , and use (7.9) as 

well as 05 =µδ , to write: 
µ

σ
σµµµµµ δκ jFRRRT =∝=−=− ;552

1
55 , (7.10) 

This is the first of Maxwell’s equations, for the field of an electric charge.  We find, in particular, 

that 5
µµ Tj ∝  is a four-vector situated along the axial components of the energy momentum 
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tensor.  The electric current, which is an electrical source density, is now also simply part and 

parcel of the generalized gravitational source Ν
ΜT ! 

 What about Maxwell’s magnetic equation?  Here, we lower all indexes in (7.7) and then 

use the symmetry ΜΝΑΒΑΒΜΝ = RR  to rewrite (7.7) as: 

ΝΑΒΝΑΒ ∝ ;5 FR . (7.11) 

Then, we turn to some more geometric “marble,” namely the Riemann identity (7.2).  Taking the 

5=Μ  component of this identity, we write: 

0;;;555 =++∝++ ΒΝΑΑΒΝΝΑΒΒΝΑΑΒΝΝΑΒ FFFRRR , (7.12) 

We may then consider the spacetime subset equations, to write: 

0;;;555 =++∝++ βµααβµµαββνααβνναβ FFFRRR , (7.13) 

Now, Maxwell’s magnetic equation also rests on geometric “marble.” 

 Maxwell’s electrodynamics in this manner, becomes fully unified with Einstein’s 

gravitation.  The equation for an electric source, µ
σ

σµ jF =; , is specified in geometry as: 

RRT 52
1

55
µµµ δκ −=− . (7.14) 

 The magnetic equation 0;;; =++ βµααβµµαβ FFF  is specified in geometry as: 

0555 =++ βνααβνναβ RRR , (7.15) 

 Finally, the geodesic equation 02

2

=−Γ+
ττττ

τ

τ
µ

τσ

στ
µ

µ

d
dx

F
m
q

d
dx

d
dx

d
xd

, which includes 

the Lorentz force law, is specified in geometry as equation (4.9): 

02
55

55

5

52

2

=Γ+Γ+Γ+
τττττττ

µ
τ

τ
µ

τσ

στ
µ

µ

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
xd

. (7.16) 

 (We note, as an aside, that  ΝΜΜΝ −= FF  a.k.a. 05, =ΜΝg  implies that µµ ,
552

1
55 g−=Γ .  

Other than to match the Lorentz force law term for term, see (5.1) and (5.2), there is no apparent 

fundamental reason why we must have 055 =Γµ .  If 0,
552

1
55 ≠−=Γ µµ g , the final term in (7.16) 
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is an extra term in the Lorentz force law, and using 
τd

dx
m
q 5

∝−  from (5.9), this term is of the 

form 2

2

52
1

2

2
,

552
1

55

55
m
q

F
m
q

g
d
dx

d
dx µµµ

ττ
∝−∝Γ , and so includes the coupling ratio 2

2

m
q

.  If 

0,
552

1
55 =−=Γ µµ g , then this term drops out entirely, and we revert to the exact comparison 

made between (5.1) and (5.2).  Additionally, if 0,
55 =µg , and given that 05, =ΜΝg  so 05,

55 =g , 

this means taken together that 0,
55 =Σg , so that 55g  = constant throughout the five-dimensional 

spacetime geometry.  If we presume that the five-geometry is locally, asymptotically flat and 

therefore can always be transformed into “geodesic coordinates” at a single 5-dimensional event, 

then because 155 +=g  in geodesic coordinates (i.e., at a single “event,”) it must also be +1 

everywhere else.  So the condition 0,
552

1
55 =−=Γ µµ g  would require that 155 +=g , 

everywhere.) 

 Irrespective of the ultimate disposition of µµ ,
552

1
55 g−=Γ , all of the foregoing does 

appear to place Maxwell’s electrodynamics onto the solid geometric footing of Einstein’s 

gravitational theory.  Even the inequivalence of electrical and inertial mass, and the real, 

measurable forces and the absolute accelerations which accompany this, are nevertheless the 

result of material bodies pursuing geodesic worldlines through a five-dimensional spacetime 

geometry. 



17 

Lab Note 2, Part 3: Gravitational and Electrodynamic Potentials, the Electro-Gravitational 

Lagrangian, and a Possible Approach to Quantum Gravitation  

Jay R. Yablon (jyablon@nycap.rr.com), February 14, 2008 

 

8.  The Electrodynamic Potential as the Axial Component of the Gravitational Potential  

 Working from the relationship 52 Τ
Μ

Τ
Μ Γ∝F  which generalizes (5.4) to five dimensions, 

and recognizing that the field strength tensor µνF  is related to the four-vector potential 

( )321 ,,, AAAA φµ ≡  according to µννµµν ;; AAF −= , let us now examine the relationship between 

µA  and the metric tensor ΜΝg .  This is important for several reasons, one of which is that these 

are both fields and so should be compatible in some manner at the same differential order, and 

not the least of which is that the vector potential µA  is necessary to establish the QED 

Lagrangian, and to thereby treat electromagnetism quantum-mechanically.  (See, e.g., Witten, E., 

Duality, Spacetime and Quantum Mechanics, Physics Today, May 1997, pg. 28.) 

 Starting with 52
1 Τ

Μ
Τ

Μ Γ∝F , expanding the Christoffel connections 

( )ΣΒΝΒΝΣΝΣΒ
ΑΣ

ΒΝ
Α −+=Γ ,,,2

1 gggg , making use of 05, =ΜΝg  which as shown in (6.5) is 

equivalent to ΝΜΜΝ −= FF , and using the symmetry of the metric tensor, we may write: 

( ) ( )ΣΤΤΣ
ΜΣ

ΣΤΤΣΣΤ
ΜΣ

Τ
Μ

Τ
Μ −=−+=Γ∝ ,5,52

1
,5,55,2

1
52

1 gggggggF . (8.1) 

It is helpful to lower the indexes in field strength tensor and connect this to the covariant 

potentials µA , generalized into 5-dimensions as ΜA , using ΣΤΤΣΣΤ −≡ ;; AAF , as such: 

( ) ( )ΣΤΤΣΑΤΤΑ
ΜΑ

ΣΜΤ
Μ

ΣΜΣΤΣΤΤΣ −=−∝=≡− ,5,5,5,5;; ggggggFgFAA . (8.2) 

The relationship ( )ΣΤΤΣΣΤ −∝ ,5,5 ggF  expresses clearly, the antisymmetry of ΣΤF  in terms of the 

remaining connection terms involving the gravitational potential.  Of particular interest, is that 

we may deduce from (8.2), the proportionality  

ΤΣΤΣ ∝ ,5; gA . (8.3) 

(If one forms ΣΤΤΣ − ;; AA  from (8.3) and then renames indexes and uses ΝΜΜΝ = gg , one arrives 

back at (8.2).)  Further, we well know that ΣΤΤΣΣΤΤΣΣΤ −=−= ,,;; AAAAF , i.e., that the covariant 
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derivatives of the potentials cancel out so as to become ordinary derivatives when specifying 

ΣΤF , i.e., that ΣΤF  is invariant under the transformation ΤΣΤΣ → ,; AA .  Additionally, the Maxwell 

components (7.10) of the Einstein equation, are also invariant under ΤΣΤΣ → ,; AA , because (7.10) 

also employs only the field strength σµF .  Therefore, let is transform ΤΣΤΣ → ,; AA  in the above, 

then perform an ordinary integration and index renaming, to write: 

ΜΜ ∝ 5gA . (8.4) 

In the four spacetime dimensions, this means that the axial portion of the metric tensor is 

proportional to the vector potential, µµ Ag ∝5 , and that the field strength tensor ΣΤF  and the 

gravitational field equations RRT Ν
Μ

Ν
Μ

Ν
Μ −=− δκ 2

1  are invariant under the transformation 

ΤΣΤΣ → ,; AA  used to arrive at (8.4).  We choose to set ΤΣΤΣ → ,; AA , and can thereby employ the 

integrated relationship (8.4) in lieu of the differential equation (8.3), with no impact at all on the 

electromagnetic field strength or the gravitational field equations, which are invariant with 

respect to this choice. 

 

9.  Unification of the Gravitational and QED Lagrangians 

 The Lagrangian density for a gravitational field in vacuo is Rgngravitatio −=� , where g is 

the metric tensor determinant and µν
µν RgR =  is the Ricci tensor.  Let us now examine a 

Lagrangian based upon the 5-dimensional Ricci scalar, which we specify by: 

5
5

5
5 RRRRR +=+=≡ Σ

Σ
σ

σ
� . (9.1) 

 To start, we return to deduce the 5=Β  component of (7.6), namely: 

ΣΝ
ΑΣ

Σ
Α

Ν
Σ

Ν
Α

Ν
Α ΓΓ−ΓΓ+Γ−= 5555,5555R , (9.2) 

as well as 55R , which is easily found by contracting the remaining free indexes in the above: 

ΣΤ
ΤΣ

Σ
Τ

Τ
Σ

Τ
Τ

Τ
Τ ΓΓ−ΓΓ+Γ−== 5555,555555 RR . (9.3) 

 Now, let us return to the discussion in the next-to-last paragraph of section 7, where we 

considered, but reached no conclusions about, the question of whether µµ ,
552

1
55 g−=Γ  is, or is 
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not, equal to zero.  Let us now make the (inductive) hypothesis that 0,
552

1
55 =−=Γ µµ g , and see 

what (deductive) results emerge from this hypothesis. 

 First, as already noted, taken together with 05, =ΜΝg , and because 155 +=g  in geodesic 

coordinates, this means that that constant155 =+=g  everywhere in the 5-dimensional spacetime.  

Second, the geodesic equation (4.9) now does reduce to (5.2), which, via (5.3) and (5.4), can be 

made identically equivalent with the Lorentz force law (5.1).  Third, from (8.4), ΜΜ ∝ 5gA , the 

axial component of the covariant vector potential must now be constant everywhere in 

spacetime, that is constant1555 =+=∝ gA .  Fourth, this means that the axial components of the 

field strength tensor ΣΤΤΣΣΤΤΣΣΤ −=−= ,,;; AAAAF  must all become zero.  To see this, we simply 

take: 

05,5,555,,55;;55 =−∝−=−= ΤΤΤΤΤΤΤ ggAAAAF . (9.4) 

The first term, 0,55 =Τg , by virtue of the hypothesis just made.  The latter term, 05,5 =Τg , 

because this is just a component of 05, =ΜΝg , i.e., ΝΜΜΝ −= FF .  Another way of stating (9.4), 

is that only the ordinary spacetime components µνF  of the field strength tensor ΜΝF  are non-

zero.  Earlier, we generalized µνF  to ΜΝF .  Now, we find that all of these added components are 

zero.  Fifth, and finally, 0,
552

1
55 =−=Γ µµ g  directly simplifies (9.2) to: 

5555 Σ
Α

Ν
Σ

Ν
Α ΓΓ+=R , (9.5) 

and (9.3) to: 

555555 Σ
Τ

Τ
Σ

Τ
Τ ΓΓ+== RR . (9.6) 

 Now, it will be helpful to start with the mixed Ricci tensor Ν
ΣR , and lower this into 

covariant form, in a 5-covariant manner, as such:   

ΝΜΝΜΝ
Σ

ΜΣΜΝ +== 5
5RgRgRgR σ

σ . (9.7) 

From this, is it easily found, making use of 155 +=g , that the component equation: 

5
5

555
5

555555 RRgRgRgR +=+= σ
σ

σ
σ . (9.8) 
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We then rearrange this into 55555
5 σ

σ RgRR −=  and insert the result into (9.1), thus arriving at: 

5555
σ

σ RgRR −+=� . (9.9) 

 Finally, we make use of the spacetime components of: (7.9) written as σσ jR ∝5 ; (8.4) 

written as σσ Ag ∝5 ; (9.6), written as 5555 Σ
Τ

Τ
Σ ΓΓ+=R ; and the oft-employed Τ

Μ
Τ

Μ ∝Γ F2
1

5 , to 

rewrite (9.9) as: 
σ

σ
σ

σ
σ

σ jAbFFaRRgRRgRR ⋅−⋅+=−ΓΓ+=−+= Σ
Τ

Τ
Σ

Σ
Τ

Τ
Σ

4
1

55555555� , (9.10) 

where we have absorbed the proportionality ∝  into the unknown constants ba, .  However, the 

term στ
στ FFFFFFFF −=−== ΣΤ

ΣΤ
ΤΣ

ΣΤ
Σ

Τ
Τ

Σ , with the final step taken by virtue of  05 =ΤF  

from (9.4).  Now, choosing 1== ba , (9.10) finally reduces to: 

( )QEDngravitatiogQEDg
RjAFFR ���� +=+=−−=

−−
11

4
1 σ

σστ
στ . (9.11) 

 Lo and behold: the QED Lagrangian density ( )σ
σστ

στ jAFFgQED −−−= 4
1�  is 

automatically added to the four-dimensional Ricci scalar R  as part of the five-dimensional Ricci 

scalar � .  More to the point: �g−  is a seamlessly-integrated electro-gravitational Lagrangian 

density, in vacuo.  Choosing the constant factors 1== ba , even the factor of ¼ and the negative 

sign of the QED Lagrangian density are all automatically introduced.  Employed in the Euler-

Lagrange equation, QED�  can be used in the usual manner to obtain Maxwell’s equation 

µ
µνν

;Fj = .  But of even greater interest, is that we now bring QED into the mix, directly from 

gravitational theory in five dimensions, which raises a possible approach to quantum gravitation. 

 

10.  A Tentative Path Toward Quantum Gravitation 

 Maintaining g to be the four-dimensional metric determinant of µνg , the electro-

gravitational Lagrangian density, in vacuo, is now specified by: 

( )σ
σστ

στ jAFFRgg −−−=−= 4
1�� . (10.1) 

Though derived from a 5-dimensional spacetime with axial time, and wholly-founded upon 

geometrodynamics in five dimensions, all that remains in (10.1) are objects specified in ordinary 
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4-dimensional spacetime.  The Einstein-Hilbert action – now including QED – is then specified 

in the usual way by integrating over the invariant 4-volume element xdgdV 4−≡ : 

( ) ( )�� −−=−= dVjAFFR
G

c
xdg

G
c

AgS σ
σστ

στ
σµν ππ 4

1
4

4
4

1616
, � . (10.2) 

Expanding σττσστ ;; AAF −= , and integrating by parts in the usual way, then allows one to 

specify a path integral ( ) ( )JiWAiS eeDAZ ≡= �  and associated transition amplitude ( )JW  for the 

QED�  portion of the above.  But what is particularly intriguing, is that QEDg
�

−
1 , in five 

dimensions, is naturally added to the Ricci scalar R , see (9.11).  What Zee, A. in Quantum Field 

Theory in a Nutshell, Princeton (2003), pp. 167 and 460 refers to as “The Central Identity of 

Quantum Field Theory,” is given generally by: 

( ) ( ) JKJJVVJK eeeD ⋅⋅−−⋅+⋅⋅− −

=�
1

2
1

2
1 /δδϕϕϕϕϕ . (10.3) 

In (10.2), we find that the Ricci curvature scalar R , in this identity, plays the role of V . 

 Given that the Ricci scalar R , which is a classical gravitational scalar, is firmly-

entrenched together with QED�  in equation (9.11), given that this originates strictly on the 

geometrodynamic basis of the 5-dimensional spacetime geometry with axial time, given that R  

appears to map neatly to V  in the Gaussian identity (10.3), and given that we know a great deal 

about how QED�  is utilized in quantum field theory, all of the foregoing may provide a new 

pathway for understanding how to quantize gravitation. 

 

11.  The Geometric Maxwell Tensor 

 Before concluding this lab note, it is also helpful to recast the Maxwell energy tensor 

( )στ
στ

ν
µ

νσ
µσ

πν
µ δ FFFFT Maxwell 4

1
4
1 −−=  into geometric form.  Again we start with 

Τ
Μ

Τ
Μ ∝Γ F2

1
5 , which, in light of (9.4), 05 =ΤF , can be written without any information loss as 

the four-dimensional τ
µ

τ
µ F2

1
5 ∝Γ . 

 First, we return to (9.5).  Using Τ
Μ

Τ
Μ ∝Γ F2

1
5 , this becomes:  

ΝΣ
ΜΣ

Σ
Μ

Ν
Σ

Ν
Μ −∝ΓΓ+= FFR 4

1
5555 ,   (11.1) 
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and with 05 =ΤF ,   

νσ
µσ

ν
µ FFR 4

1
55 −∝ .   (11.2) 

The contraction of this, also evident via (9.6), becomes: 

στ
στ FFR 4

1
55 −∝ .   (11.3) 

 Employing (11.2) and (11.3) then enables us to specify the Maxwell tensor, 

geometrically, as: 

( ) 554
1

554
1

4
1

55 RRFFFFTT Maxwell ν
µ

ν
µ

στ
στ

ν
µ

νσ
µσ

πν
µ

ν
µ δδ −∝−−=≡ .   (11.4) 

To maintain a balanced set of spacetime indexes, (11.4) suggests that the Maxwell tensor must 

actually be the axial 55=ΑΒ  and µν=ΜΝ  component of larger, fourth-rank energy tensor 

ΑΒΝ
ΜT  which has the same symmetries as the Riemann tensor ΑΒΝ

ΜR , and for which 

MaxwellTT ν
µ

ν
µ ≡55 .  The Poynting vector is then to be found residing on the kk RT 55

0
55

0 ∝  

components of the Riemann tensor, 3,2,1=k , and so too, acquires a totally geometric 

foundation. 

 These expanded tensors have 50 independent components.  Particularly, ΜΑΝΒΜΑΒΝ −= RR  

and ΝΒΜΑΜΑΒΝ = RR  yields a symmetric tensor of two antisymmetric 5x5 tensors.  An 

antisymmetric 5x5 tensor has 10 independent components, yielding a symmetric 10x10 tensor 

with 55 independent components.  However, identity (7.2) imposes five constraints among these 

55 independent components, one for each of the five indexes which is omitted from any 

particular equation based on (7.2).  The result is 50 independent components.  Maxwell’s tensor 

(11.4) clearly contains 10 of these independent components, leaving the remaining 40 

components for further exploration. 


