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Abstract:  
 We examine a Kaluza-Klein-type theory of classical electrodynamics and 

gravitation in a five-dimensional Riemannian geometry.  Based solely on the condition that 

the electrodynamic Lorentz force law must describe geodesic motion in this five-

dimensional geometry, it appears possible to place all of Maxwell’s electrodynamics, the 

theory of electrodynamic potentials, and the QED action on a solid geometrodynamic 

footing, in vacuo, for weak and strong electro-gravitational fields.  We make no choice as 

between the fifth dimension being timelike or spacelike, but simply point out the impact in 

those places where this choice makes a difference.  In the end, we deduce the Maxwell 

stress energy tensor, and in the process, learn that this fifth dimension must be spacelike. 
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1.  Introduction 

 The possibility of employing a fifth spacetime dimension to unite classical gravitation 

and electrodynamics has intrigued physicists for almost a century.  [1], [2]   Early theorists 

became perhaps overly-occupied with making assumptions about the scale or topology of the 

extra coordinate dimension. [3]  Following the path of Wesson and other current-day theorists 

[4], we seek here to expose the main features of Kaluza- Klein theory irrespective of any 

particular model, and most importantly, to make the connection between Einstein’s gravitation 

and Maxwell’s electrodynamics which some have looked to 5-dimensional theories to provide, 

as clear and solid as possible, and as independent as possible of the detailed choice of model. 

 Most fundamentally, we adopt the view of the above-noted theorists that matter and 

electrodynamic charge are “induced” in the observed four dimensions of spacetime, from a 

vacuum in five dimensions, and so, in keeping with the spirit of Wheeler’s program, [5] are of 

completely geometrodynamic origin.  Particularly, we seek to show how classical 

electrodynamics emerges entirely from an Einstein-Hilbert Action of the general form 

�= RdVS κ2
1  where R  is a suitably-defined Ricci curvature scalar, integrated over a suitable 

multidimensional spacetime volume, and 48 cGπκ =  is the constant from Einstein’s equation 

RRT ν
µ

ν
µ

ν
µ δκ 2

1−=− .  The reader will observe that this omits any Lagrangian density Matter�  

of matter, i.e., that it is not of the form ( )� += dVRS Matter2
1 �κ  and so is in the nature of action 

equation for the vacuum.[6]  In different terms, we seek to induce the entirely of Maxwell's 

electrodynamics with sources, as well as the Maxwell stress-energy tensor, out of a 

gravitationally-based vacuum.  

   The main line of development will be deduced, based on a single proposition: we shall 

require that the Lorentz force of electrodynamics, 
ττ

τ

τ
µ

µ

d
dx

qF
d

xd
m =2

2

, must be represented as 

fully geodesic motion in the five-dimensional geometry. 

 The foundation of this effort will be a five-dimensional Riemannian geometry, without 

any changes or enhancements, which merely extends the entire apparatus of gravitational theory 

into one more dimension.  In five dimensions, we employ ΝΜΜΝ ≡ gg  with uppercase Greek 
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indexes 5,3,2,1,0, =ΝΜ  for  the metric tensor, so µνg  with lowercase 3,2,1,0, =νµ  is the 

ordinary metric tensor in the spacetime subspace.  Inverses are defined in the usual manner 

according to Ν
Μ

ΣΝ
ΜΣ = δgg  and so ΜΣg  and ΣΝg  raise and lower indexes in the customary 

manner, but must be applied over all five dimensions to achieve proper five-covariance.  The 

covariant derivative of the metric tensor 0; =ΣΜΝg , as always. 

 While most authors who still study Kaluza-Klein theories treat the fifth dimension as 

spacelike and a few have considered this to be timelike, e.g., [7], [8], [9], we shall approach the 

fifth dimension as independently of this choice as possible.  Where this choice does make a 

difference, we shall point this out.  If we define ΜΝΜΝΜΝ +≡ hg κη  in the usual manner with 

516 cG �πκ = , then for the weak-field limit ΜΝΜΝ → ηg .  If the fifth dimension is timelike, 

( ) ( )1,1,1,1,1diag +−−−+=ΜΝη ; if it is spacelike, then ( ) ( )1,1,1,1,1diag −−−−+=ΜΝη .  In either 

case, 0=ΜΝη  for Ν≠Μ .  Note that the constant κ  in Einstein’s equation 

RRT ν
µ

ν
µ

ν
µ δκ 2

1−=−  is related to the foregoing κ , with fundamental constants restored, by 

42

2
1 8 cGc πκκ == � , with the overbar used to distinguish these two constants κκ , .  The 

constant κ  will appear frequently in the various equations herein. 

 At the every end, see equations (10.13) and (10.14) infra, in the course of establishing the 

Maxwell stress-energy tensor, we will deduce that this fifth dimension must be spacelike. 

 

2.  Geodesic Motion in Five Dimensions, and the Lorentz Force 

 We start by maintaining the usual interval in the 4-dimensional spacetime subspace, 

using νµ
µντ dxdxgd =2 , and define the five-space interval as: 

55
55

5
5

2

55
55

5
5

5
5

2

2 dxdxgdxdxgd

dxdxgdxdxgdxdxgdxdxgdxdxgd

++=

+++=≡Τ ΝΜ
ΜΝ

σ
σ

µ
µ

ν
ν

νµ
µν

τ
. (2.1) 

The above is independent of whether the weak field 15555 ±=→ηg , i.e., of whether the fifth 

dimension is timelike or spacelike, and is generally model-independent. 

 Like any metric equation, (2.1) can be algebraically-manipulated into: 
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ΤΤ
=

ΝΜ

ΜΝ d
dx

d
dx

g1 , (2.2) 

which is the first integral of the equation of motion.  In five dimensions, we specify the 

Christoffel connections in the usual manner, that is, ( )ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΣΤ
Μ −+=Γ ,,,2

1 gggg , hence 

ΤΣ
Μ

ΣΤ
Μ Γ=Γ .  As noted, we employ 0; =ΣΜΝg  as usual, with the usual first rank covariant 

derivative Α
ΑΣ

Μ
Σ

Μ
Σ

Μ Γ+= AAA ,; .  We then take the covariant derivative of each side of (2.2) 

above, and after the usual reductions employed in four dimensions, and multiplying the result 

through by 22 / τddΤ , we arrive at a five-dimensional geodesic equation which bears an exact 

resemblance to the four-dimensional gravitational equation: 

02

2

=Γ+
ΤΣ

ΣΤ
Μ

Μ

τττ d
dx

d
dx

d
xd

. (2.3) 

 The above contains five independent equations.  We are interested for now in the four 

equations for which µ=Μ , which specify motion in ordinary spacetime: 

02

2

=Γ+
ΤΣ

ΣΤ
τττ

µ
µ

d
dx

d
dx

d
xd

. (2.4) 

This expands, using the metric tensor symmetry ΝΜΜΝ = gg , to: 

02
55

55

5

52

2

=Γ+Γ+Γ+
τττττττ

µ
σ

σ
µ

τσ

στ
µ

µ

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
xd

. (2.5) 

Now, let us contrast (2.5) above to the gravitational geodesic equation which includes the 

Lorentz force law, namely, equation (20.41) of [10]: 

02

2

=−Γ+
ττττ

σ

σ
µ

τσ

στ
µ

µ

d
dx

F
m
q

d
dx

d
dx

d
xd

. (2.6) 

 We now take a critical step:  We require that the Lorentz force as expressed above, must 

be represented as nothing other than geodesic motion in the five-dimensional geometry.  The 

first two terms in (2.5) and (2.6) are identical, and they specify geodesic motion in an ordinary 

gravitational field absent any electrodynamic fields or sources.  The absence of any mass or 
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charge in the first two terms captures the Galilean principle of equivalence, and further expresses 

Newtonian inertial motion in a gravitational field via the Christoffel connections στ
µΓ . 

 If we require the Lorentz force to also be fashioned as geodesic motion through 

geometry, then we can do so by defining the third terms in (2.5) and (2.6) to be equivalent to one 

another, and the fourth term in (2.5) to be zero.  Therefore, we now define: 

τττ

σ

σ
µ

σ

σ
µ

d
dx

F
m
q

d
dx

d
dx −≡Γ

5

52 , and (2.7) 

055 ≡Γµ . (2.8) 

One might wish to consider 055 ≠Γµ , in which case 
ττ

µ

d
dx

d
dx 55

55Γ  in (2.5) would become an 

additional term in the Lorentz force law, but in the absence of experimental evidence for any 

deviations from the Lorentz force law, we shall proceed on the basis of (2.8). 

 The relationships (2.7) and (2.8), ensure that Lorentz force motion is in fact, no more and 

no less than geodesic motion in five dimensions.  All else through the middle of Section 8 will be 

deduced from (2.7) and (2.8). 

 

3.  Placing the Lorentz Force on a Geometrodynamic Footing as Geodesic Motion 

 Now, let us focus on equation (2.7).  We can divide out τσ ddx   from (2.7), and then 

write the remaining terms as. 

m
q

F
cd

dx
σ

µ
σ

µ

τ 5

5

5
1

2
�

−≡Γ , (3.1) 

where we have explicitly restored 1== c� .  Now, we separate the proportionalities 

mqddx ∝τ5  and σ
µ

σ
µ F−∝Γ 52 , and turn the proportionalities ∝  into equalities by restoring 

their dimensional and numeric constants, starting with the former proportionality. 

 Irrespective of whether the fifth dimension is timelike or spacelike, we take 5dx  to be 

given in dimensions of time, so that τddx5  is a dimensionless ratio.  In the event that the fifth 

dimension is spacelike, one need merely divide through by c .  In rationalized Heaviside-Lorentz 

units, the electric charge strength q  (for a unit charge such as the electron, muon and tauon) is 
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related to the dimensionless (running) coupling cq �πα 42=  which approaches 036.137/1→α  

at low energy.  The value of α  is the same in all systems of units but the numerical value of q  is 

different, so it is imperative that the exact expression for mqddx ∝τ5  be based on α  rather 

than q , and be independent of where the π4  factor appears.  Further, to match dimensions with 

c�  the mass m  needs to be multiplied by a factor of G .  Taking all of this into account, we 

now define: 

m
q

bcm
q

GbmG
c

bd
dx

κπ
α

τ
21

4
111

5

5

�

� −=−=−≡ . (3.2) 

where b  is a dimensionless, numeric constant of proportionality that we are free at this moment 

to choose at will, which we will carry throughout the development, and which will ultimately be 

deduced to be 82 =b  when we obtain the Maxwell stress-energy tensor, see equations (10.13) 

and (10.14) infra.   The equivalence between the first two terms is independent of the system of 

units but the terms containing q  are in Heaviside-Lorentz units. 

 Then, we substitute (3.2) into (3.1) to obtain: 

σ
µ

σ
µ κFb4

1
5 ≡Γ . (3.3) 

The definitions (3.2) and (3.3), together with 055 ≡Γµ  from (2.8), when substituted into (2.5), 

turn the five-dimensional geodesic equation (2.5) into the Lorentz force law, and places this 

electrodynamic motion onto a totally-geometrodynamic footing.  Of course, (3.3) is of further 

value, because it also relates the mixed field strength tensor σ
µF  to the extra-dimensional 

connection components σ
µ

5Γ , and this will lead to numerous other results.  Although the ΣΤ
ΜΓ  

are not themselves tensors in general, (3.3) does suggest that that particular components σ
µ

5Γ  do 

transform in the same way as the mixed tensor σ
µF , multiplied by a the constant factor κ .  This 

“suggestion” is formally validated by the result (6.4), infra.  

 The question of whether the foregoing are fair suppositions, now rests on the correctness 

and sensibility of the deductions to which they lead. 
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4.  Timelike versus Spacelike for the Fifth Dimension, and a Possible Connection to 

Intrinsic Spin 

 The results above are independent of whether the extra dimension is timelike or 

spacelike.  In this section, we make a brief digression to examine each of these alternatives in a 

very basic way.  This section can be safely skipped by the reader wishing to proceed straight into 

the main line of development. 

 Transforming into an “at rest” frame, 0321 === dxdxdx , the spacetime metric equation 

νµ
µντ dxdxgd =2  reduces to 0

00 dxgd ±=τ , and (3.2) becomes: 

m
q

G
g

bdx
dx

π4
1 00

0

5

±= . (4.1) 

 For a timelike fifth dimension, 5x  may be drawn as a second axis orthogonal to 0x , and 

the physics ratio mq /  (which, by the way, results in the mq /  material body in an 

electromagnetic field actually “feeling” a Newtonian force in the sense of maF =  due to the 

inequivalence of electrical and inertial mass) measures the “angle” at which the material body 

moves through the 05 , xx  “time plane.”   

 For a spacelike fifth dimension, where one may wish to employ a compactified, hyper-

cylindrical φRx ≡5  (see [11], Figure 1) and R  is a constant radius (distinguish from the Ricci 

scalar by context), φRddx ≡5 .  Substituting this into (3.2), leaving in the ±  ratio obtained in 

(4.1), and inserting c  into the first term to maintain a dimensionless equation, then yields: 

m
q

GbmG
c

bcd
Rd

π
α

τ
φ

4
111 ±=±= �

. (4.2) 

We see that here, the physics ratio mq /  measures an “angular frequency” of fifth-dimensional 

rotation.  Interestingly, this frequency runs inversely to the mass, and by classical principles, this 

means that the angular momentum is independent of the mass, i.e., constant.  If one doubles the 

mass, one halves the tangential velocity, and if the radius stays constant, then so too does the 

angular momentum.  Together with the ±  factor, one might suspect that this constant angular 

momentum is, by virtue of its constancy independently of mass, related to intrinsic spin.  In fact, 
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following this line of thought, one can arrive at an exact expression for the compactification 

radius R , in the following manner: 

 Assume that 5x  is spacelike, casting one’s lot with the preponderance of those who study 

Kaluza-Klein theory.  In (4.2), move the c  away from the first term and move the m  over to the 

first term.  Then, multiply all terms by another R .  Everything is now dimensioned as an angular 

momentum Rvm ⋅⋅ , which we have just ascertained is constant irrespective of mass.  So, set this 

all to �n2
1± , which for 1=n , represents intrinsic spin.  The result is as follows: 

�
�

nqR
G

c
b

R
G
c

b
R

d
Rd

m
2
1

4
11 3

±=±=±=
π

α
τ
φ

. (4.3) 

Now, take the second and fourth terms, and solve for R  with 1=n , to yield: 

PL
b

c
Gb

R
αα 22 3 == �

, (4.4) 

where 3cGLP �=  is the Planck length.  This gives a definitive size for the compactification 

radius, and it is very close to the Planck length.  (Keep in mind that we will eventually find in 

(10.13) infra that 82 =b , so (4.4) will become α/2PLR = .)  What is of interest, is that α  is a 

running coupling.  At low probe energies, where 036.137/1→α , PLbR ⋅⋅= 853.5 .  However, 

this is just the apparent radius relative to the low probe energy.  If one were to probe to a regime 

where α  becomes large, say, of order unity, 1=α  then P
b LR 2=  is quite close to the Planck 

length of Wheeler’s geometrodynamic vacuum “foam.” [10] at §43.4, [12]*  Since we have based 

the foregoing on a unit charge with spin ½, and since this is independent of the mass, the 

foregoing would appear to characterize the compactification radius R  for all of the charged 

leptons, and to provide a geometric foundation for intrinsic spin.  This suggests that for 1=α  or 

on the order of unity, the compactification radius of the fifth dimension  may become 

                                                 
* By way of review, the Planck mass, defined from the term atop Newton’s law as a mass for which cGM P �=2

, 

is thus GcM P �= .  In the geometrodynamic vacuum, the negative gravitational energy between Planck 

masses separated by the Planck length 3cGLP �=  precisely counterbalances and cancels the positive energy of 

the Planck masses themselves.  The Schwarzschild radius of a Plank mass PPS LcGcGMR 22/2 32 === � . 
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synonymous with the Planck length itself, or the Schwarzschild radius of the vacuum, or 

something close to one of both of these. 

 While (4.2) applies generally for a compactified spacelike fifth dimension, before 

proceeding too far with this intrinsic spin interpretation (4.3), however, it is worth noting that for 

a neutral body, 0=q , such as the neutrino, we have 0/ =τφ dd , and so there is no fifth-

dimensional rotation.  More generally, any electrically-neutral body must be considered to be 

non-moving through the 5x  dimension, 05 =dx .  This would suggest that the neutrino has no 

intrinsic spin, which is, of course, contradicted by empirical knowledge.  So, (4.3), while 

intriguing, does need to be studied further.  Also, the intrinsic spin interpretation (4.3) suggests 

conversely, that any elementary scalar particle which has no intrinsic spin, must be electrically 

neutral.  This is, in fact, true of the hypothesized Higgs boson.  [13] 

 

5.  Symmetric Gravitation and Antisymmetric Electrodynamics 

 Now, following the brief digression in section 4, let us turn back to the association 

σ
µ

σ
µ κFb4

1
5 ≡Γ  in (3.3), which arises from the requirement that the Lorentz force be represented 

as geodesic motion in five dimensions.  We know that νµµν FF −=  is an antisymmetric tensor.  

By virtue of (3.3), this will place certain constraints on the related Christoffel connections 

( )ΑΤΤΑΤΑ
ΜΑ

Τ
Μ −+=Γ ,55,,52

1
5 gggg , and it is important to find out what these are.  These 

constraints, in the next section, will provide the basis for placing Maxwell’s equations onto a 

purely geometrodynamic footing. 

 First, because we are working in five dimensions, we will find it desirable to generalize 
µνF  to ΜΝF .  We make no a priori supposition about the additional components in ΜΝF , other 

than to require that they be antisymmetric, ΝΜΜΝ −≡ FF .  Any other information about these 

new components is to be deduced, not imposed.  Second, we generalize (3.3) into the full five 

dimensions, thus: 

Σ
Μ

Σ
Μ =Γ Fbκ4

1
5 . (5.1) 

By virtue of (2.8), 055 ≡Γµ , we may immediately deduce that: 

054
1

55 ==Γ µµ κFb . (5.2) 
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 As it stands, Σ
ΜF  is a mixed tensor, and it would be better to raise this into contravariant 

form where we can clearly examine the consequences of having an antisymmetric field strength 
ΝΜΜΝ −≡ FF .  Thus, let us now raise the lower index in (5.1), and at the same time equate this 

to the Christoffel connections, as such: 

( )ΑΣΣΑΣΑ
ΣΝΜΑ

Σ
ΜΣΝ

Σ
ΜΣΝΜΝ −+=Γ== ,55,,52

1
54

1
4
1 ggggggFgbFb κκ . (5.3) 

Now, we use (5.3) to write ΝΜΜΝ −= FF  completely in terms of the metric tensor ΜΝg  and its 

first derivatives, as: 

( ) ( )ΑΣΣΑΣΑ
ΣΜΝΑ

ΑΣΣΑΣΑ
ΣΝΜΑΝΜΜΝ −+−=−+=−= ,55,,5,55,,54

1
4
1 ggggggggggFbFb κκ .(5.4) 

Renaming indexes, and using the symmetry of the metric tensor, this is readily reduced to:: 

05, =ΤΣ
ΤΝΜΣ ggg . (5.5) 

This is an alternative, geometric way of saying that ΝΜΜΝ −= FF . 

 We can further simplify this using the inverse relationship Σ
Ν

ΤΣ
ΤΝ = δgg , which we can 

differentiate to obtain ( ) 0,,, =+= ΑΤΣ
ΤΝ

ΤΣΑ
ΤΝ

ΑΤΣ
ΤΝ gggggg , i.e., ΤΣΑ

ΤΝ
ΑΤΣ

ΤΝ −= gggg ,, .  This 

can then be used with 5=Α  to reduce (5.4) to the very simple expressions, for both the 

covariant and contravariant metric tensor: 

05, =ΜΝg ; 05, =ΜΝg . (5.6) 

This states that all components of the metric tensor are constant when differentiated with respect 

to the fifth dimension. 

 Now, we return to write out ( ) 0,555,55,52
1

55 =−+=Γ ΑΑΑ
Α gggg µµ  from (2.8), see also 

(5.2).  Combined with 05, =ΜΝg  above and ΤΣΑ
ΤΝ

ΑΤΣ
ΤΝ −= gggg ,,  we further deduce that: 

0,
55 =Αg ; 0,55 =Αg  (5.7) 

This means, quite importantly, that constant55 =g  and constant55 =g , everywhere in the five-

dimensional geometry. 
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 To fix these constant values, consider the weak-field limit ΜΝΜΝ → ηg .  If the fifth 

dimension is timelike, ( ) ( )1,1,1,1,1diag +−−−+=µνη  and 155
55 +== gg .  If it is spacelike (briefly 

explored regarding intrinsic spin in section 4), then ( ) ( )1,1,1,1,1diag −−−−+=ΜΝη  and 

155
55 −== gg .  But, by (5.7), if the above expressions for 55g  and 55g  are true anywhere, then 

they are true everywhere.  Therefore: 

155
55 +== gg , or 155

55 −== gg , (5.8) 

respectively, for a timelike or spacelike fifth dimension.  In either case, timelike or spacelike, 

155
55 =gg .  The inverse 11 5

5
5

5
55

55
5

5
5

5 ==+=+=Τ
Τ δτ

τ
τ

τ gggggggg  then leads also to the null 

condition: 

05
5 =τ

τ gg , (5.9) 

which applies irrespective of the timelike versus spacelike choice. 

 Finally, using (5.1) together with (5.6) and (5.7), we may deduce: 

( ) 0,555,55,5
5

2
1

55
5

5
5

4
1 =−+=Γ= ΑΑΑ

Α ggggFbκ . (5.10) 

Taking this together with (5.2), 054
1

55 ==Γ µµ κFb , we have now deduced that all of the newly-

introduced fifth-dimensional components for the mixed field strength tensor are zero, i.e., 

05554
1 =Γ= ΜΜFbκ . (5.11) 

 The free index in 05 =ΜF  above can easily be lowered to also find that the covariant: 

055 =−= ΜΜ FF . (5.12) 

But, since the ordinary spacetime components of ν
µF  are non-zero, one should take care to 

ensure that the contravariant tensor components 055 =−= ΜΜ FF  as well, that is, we want to 

make sure that the fixed index “5” in (5.11) can properly be raised.  One can employ (5.1) 

together with the explicit components for Σ
ΜΓ 5  to write: 

( )ΑΣΣΑΣΑ
ΜΑΣΝ

Σ
ΜΣΝ

Σ
ΜΣΝΜΝ −+=Γ== ,55,,52

1
5 ggggggFgF . (5.13) 
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Expanding this to separate the µ  from the 5 components, and applying (5.6), (5.7) and (5.9) as 

needed, together with ΝΜΜΝ −= FF  to eliminate the only term which (5.6), (5.7) and (5.9) 

cannot directly eliminate, one can indeed deduce that in addition to (5.11) and (5.12): 

055 =−= ΜΜ FF . (5.14) 

Now, the free index can be easily lowered, referring also to (5.1), to find that: 

05
5

5
55

4
1 =Γ=Γ= ΜΜΜFbκ . (5.15) 

i.e., 05 =ΜF .  So, we find that all of the newly-introduced fifth-dimensional components of the 

field strength tensor ΜΝF , whether in raised, lowered, or either mixed form, are equal to zero.  

Equations (5.11), 055 =ΓΜ , and (5.15), 05
5

5
5 =Γ=Γ ΜΜ , taken together, tell us that as well, the 

“rule” that any Christoffel connection with “two or more fifth-dimension indexes,” is also equal 

to zero. 

 Combining (5.1) with 055 =−=Μ MFF  as well as 055 =−= ΜΜ FF , we may deduce two 

further relationships: 

05
5

5
5 =Γ−=Γ Σ

ΜΣ
Σ

ΣΜ gg  and  05555 =Γ−=Γ Τ
Μ

Μ
Μ

ΤΜ gg , (5.16) 

which are variations of the “two or more fifth dimension index” rule noted above. 

 It is also helpful as we shall soon see when we examine the Riemann tensor, to make note 

of the fact that: 

( ) ( ) 05,,5,,5,,2
1

,,,5,2
1

5, =−++−+=Γ ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΣΤ
Μ gggggggg . (5.17) 

This makes use of (5.6) and the fact that ordinary derivatives commute.  A further variation of 

(5.17) employs (5.1) to also write, for the field strength tensor: 

05,4
1

5,5 ==Γ Σ
Μ

Σ
Μ Fbκ . (5.18) 

i.e., 05, =Σ
ΜF .  Lust like the metric tensor, all components of the field strength tensor are 

constant when differentiated with respect to the fifth dimension.   

 Again, at bottom, every result in this section is a consequence of relationships (5.1) and 

(5.2), taken in combination with the antisymmetric field strength ΝΜΜΝ −≡ FF .  Now, we have 

the tools required to turn to the Riemann tensor, and to Maxwell’s equations. 
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6.  Maxwell’s Equations as Pure Geometry 

 We have shown how Lorentz force motion might be described as simple geodesic motion 

in a five-dimensional Kaluza-Klein spacetime geometry.  But equations of motion are only one 

part of a complete (classical) field theory.   The other part is a specification of how the “sources” 

of that theory create the “fields” originating from those sources.  In a complete theory, the 

equations of motion then describe motion through the fields originating from the sources.  It is 

now time to place Maxwell’s equations on a firm geometric footing.  

 In five dimensions, we specify the Riemann tensor in the usual way, albeit with an extra 

fifth-dimensional index.  That is: 

ΣΝ
Α

ΒΜ
Σ

ΣΜ
Α

ΒΝ
Σ

ΜΒΝ
Α

ΝΒΜ
Α

ΒΜΝ
Α ΓΓ−ΓΓ+Γ+Γ−= ,,R . (6.1) 

Now, let’s consider the 5=Μ  component of this equation, that is: 

ΣΝ
Α

Β
Σ

Σ
Α

ΒΝ
Σ

ΒΝ
Α

ΝΒ
Α

ΝΒ
Α ΓΓ−ΓΓ+Γ+Γ−= 555,,55R . (6.2) 

 By virtue of 05, =Γ ΣΤ
Μ , equation (5.17), which is in turn a consequence of 05, =ΜΝg , 

which is in turn a consequence of ΝΜΜΝ −≡ FF , the second term zeros out, and (6.2) becomes: 

ΣΝ
Α

Β
Σ

Σ
Α

ΒΝ
Σ

ΝΒ
Α

ΝΒ
Α ΓΓ−ΓΓ+Γ−= 55,55R . (6.3) 

Substituting (5.1), i.e., Σ
Μ

Σ
Μ =Γ Fbκ4

1
5  into the above, and with some minor term 

rearrangement, we immediately arrive at the very critical expression:  

( ) ΝΒ
Α

Σ
Α

ΒΝ
Σ

Β
Σ

ΣΝ
Α

ΝΒ
Α

ΝΒ
Α −=Γ−Γ+−= ;4

1
,4

1
5 FbFFFbR κκ . (6.4) 

In particular, these three remaining terms of ΝΒ
Α

5R  turn out to be identical with the expression 

for the gravitationally-covariant derivative ΝΒ
Α

;F  of the mixed field strength tensor, times the 

constant factor κb4
1− .  This leads us immediately to a geometric foundation for Maxwell’s 

equations in the following way: 

 As regards Maxwell’s electric charge equation, we contract (6.4) down to its Ricci tensor 

component 5ΒR  and define a five-current ΒJ  with covariant 5-space index: 

( ) ΒΣΒ
Σ

Τ
Σ

ΒΣ
Τ

Β
Τ

ΤΣ
Σ

ΣΒ
Σ

ΣΒ
Σ

Β −≡−=Γ−Γ+−== JbFbFFFbRR κκκ 4
1

;4
1

,4
1

55 . (6.5) 

Now, we separate this into the two equations as such: 
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( ) βσβ
σ

τ
σ

βσ
τ

β
τ

τσ
σ

σβ
σ

β κκκ JbFbFFFbR 4
1

;4
1

,4
1

5 −≡−=Γ−Γ+−= , and (6.6) 

( ) 54
1

;54
1

55,54
1

55 JbFbFFFbR κκκ −≡−=Γ−Γ+−= Σ
Σ

Τ
Σ

Σ
ΤΤ

ΤΣ
Σ

Σ
Σ . (6.7) 

In (6.6), note that because 05 =ΣF  and 05
5 =Γ Τ  (see 5.15), we can easily drop the ΤΣ,  indexes 

down to τσ , .  In (6.7), however, we leave Σ
Σ

;5F  as is because as we shall note in a moment, this 

term is not zero.   

 In (6.6), we discern the four-covariant derivative τ
σ

βσ
τ

β
τ

τσ
σ

σβ
σ

σβ
σ FFFF Γ−Γ+= ,; , 

which is what allowed us to drop Σ
Σ

;βF  to σβ
σ

;F .  This means that σβ
σ

β ;FJ =  is the observed 

electromagnetic current source density, with covariant index.  This is Maxwell’s electric charge 

equation, on a geometric foundation.  

 For the fifth-dimensional component 55R  in (6.7), we can use 05 =ΤF  to eliminate the 

first two terms inside the parenthesis, but the third term is not zero.  For the third term, we again 

employ the substitution Σ
Μ

Σ
Μ =Γ Fbκ4

1
5  from (5.1).  Thus: 

54
1

;54
1

22
16
1

55 JbFbFFbR κκκ στ
στ −=−=−= Σ

Σ . (6.8) 

In the above, we have used στ
στ FFFFFFFF −=−== ΣΤ

ΣΤ
ΣΤ

ΤΣ
Τ

Σ
Σ

Τ .  Note, that we raise and 

lower indexes while they are five-dimensional, then we reduce to lowercase Greek indexes via 

05
5 == Σ

Σ FF . 

 Now, we begin to notice a significant result:  Despite the 5;5
5

;5;5 FFF +=Σ
Σ

σ
σ  term in 

(6.8) containing components of a mixed tensor which vanish in their own right, namely 05 =ΣF , 

this term for 55R  is not equal to zero, and so, 0;5 ≠Σ
ΣF .  Rather, we find that the covariant 

derivative term 05;5
5

;5;5 ≠+=Σ
Σ FFF σ

σ  does not vanish even though 05 =ΣF , and in fact, 

leaves a very central term στ
στ FF  found  in the QED free-field Lagrangian 

στ
στ FFFreeQCD 4

1
)( −=�  and in ( )στ

στ
ν

µ
νσ

µσ
ν

µ δ FFFFT Maxwell 4
1−−= , the Maxwell stress-energy 

tensor in Heaviside-Lorentz units.  One may think of 04
1

;5 ≠=Σ
Σ

στ
στκ FFbF  as being 

“gravitationally induced” out of 05 =ΣF , solely as a non-linear gravitational effect, because in 

the absence of gravitation, covariant derivatives approach ordinary derivatives and so 
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0,5;5 =→ Σ
Σ

Σ
Σ FF .  This induced term originates from the final term ΣΝ

Α
ΒΜ

Σ ΓΓ−  of the 

Riemann tensor ΒΜΝ
ΑR , via the progression Σ

Τ
Τ

Σ
Σ

Τ
Τ

Σ
ΣΜ

Α
ΒΝ

Σ =ΓΓ→ΓΓ FFb
22

16
1

55 κ , starting 

from (6.1), and using Σ
Μ

Σ
Μ =Γ Fbκ4

1
5  from (5.1).   

 So, the upshot of (6.8), is that the fifth component of the five-covariant current source 

density in a five-dimensional spacetime, στ
στκ FFbFJ 4

1
;55 == Σ

Σ , is not zero despite 05 =ΣF , is 

gravitationally-induced from the term ΣΜ
Α

ΒΝ
Σ ΓΓ  in the Riemann tensor, and carries the στ

στ FF  

scalar which is central to QED and the Maxwell stress-energy tensor and which, in the free-field 

Lagrangian density, represents the kinetic energy of a photon. 

 Turning now to Maxwell’s magnetic equation, we first lower the Α  index in (6.4), 

ΝΒ
Α

ΜΑΝΜΒ = 55 RgR , and use ΜΝΑΒΑΒΜΝ = RR  to write: 

( ) ΝΜΒΝΒ
Α

ΜΑΣ
Α

ΒΝ
Σ

ΜΑΒ
Σ

ΣΝ
Α

ΜΑΝΒ
Α

ΜΑΝΜΒ −=−=Γ−Γ+−= ;4
1

;4
1

,4
1

5 FbFgbFgFgFgbR κκκ . (6.9) 

Maxwell’s magnetic equation then arises straight from the 5-dimensional rendition of the “first” 

Bianchi identity: 

0=++ ΜΒΝΑΜΑΒΝΜΝΑΒ RRR . (6.10) 

Making use of (6.9), the 5=Μ  component of this is: 

( ) ( ) 0,,,4
1

;;;4
1

555 =++−=++−=++ ΒΝΑΑΒΝΝΑΒΒΝΑΑΒΝΝΑΒΒΝΑΑΒΝΝΑΒ FFFbFFFbRRR κκ , (6.11) 

where we account for the well-known fact that in the cyclic combination of (6.11) with 

antisymmetric tensors, the Christoffel terms in the covariant derivatives cancel identically, so the 

covariant derivatives becomes ordinary derivatives.  In the ναβ=ΝΑΒ  subset of this, we 

immediately obtain Maxwell’s magnetic equation 

0,,, =++ βνααβνναβ FFF . (6.12) 

 In light of our earlier having found some new terms in Maxwell’s electric charge 

equation arising from the fifth dimension, see, e.g., the 55R  equation in (6.8), one may ask 

whether there are any additional electrodynamic terms of interest in the (6.11) above, in the 

circumstance where more than a single fifth-dimensional index is employed.  Because 
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ΒΑΜΝΜΝΑΒΑΒΜΝ −== RRR , it is clear that with more than two fifth-dimensional indexes, e.g., 

µ555R , (6.11) will identically reduce to zero.  But we should explore whether there is any 

additional electrodynamic information to be gleaned when exactly two fifth-dimensional indexes 

are used in (6.11).  Thus, we may examine, say: 

( ) ( ) 0,5,55,4
1

;5;55;4
1

555555 =++−=++−=++ ΒΑΑΒΑΒΒΑΑΒΑΒΑΒΑΒΑΒ FFFbFFFbRRR κκ . (6.13) 

We learn from (6.8), especially 04
1

;5 ≠= στ
στ

σ
σ κ FFbF , not to automatically eliminate a field 

strength term such as 5
σF  when it appears in a covariant derivative, i.e., σ

σ
;5F .  However, the 

migration of covariant to ordinary derivatives in the cyclic combination of (6.11) removes this 

complication.  We know from (5.12) that 055 == ΑΒ FF , so their the ordinary derivatives of these 

will vanish as well.  The remaining ( ) 05,5,5,5, =+== Β
Σ

ΑΣΒ
Σ

ΑΣΒ
Σ

ΑΣΑΒ FgFgFgF  in (6.13), by 

virtue of (5.6), 05, =ΑΣg , and (5.18), 05, =Β
ΣF .  Thus, (6.13) is identically equal to zero, not 

only because of the Bianchi identity, but because of the inherent properties of the ΑΒF  and ΑΒg  

developed in section 5.  Thus, there is no additional electrodynamic information to be gleaned 

from (6.13). 

 We have now placed each of Maxwell’s equations on a solely geometric footing.  

Maxwell’s source equation in covariant (lower index) form is specified by (6.6), namely, 

σβ
σ

ββ κκ ;4
1

4
1

5 FbJbR −=−= .  The fifth component of this source equation, (6.8), contains the 

very central term στ
στ FFFreeQCD 4

1
)( −=� , which is central to QED and to the Maxwell stress-

energy tensor.  Maxwell’s magnetic equation is simply a fifth-dimensional component (6.11) of 

the first Bianchi identity 0=++ ΜΒΝΑΜΑΒΝΜΝΑΒ RRR .  And, the Lorentz force equation (2.6), 

upon which the foregoing geometrization of Maxwell’s equations is based, is merely the 

equation for four-space geodesic motion in the five-dimensional geometry, 

02

2

=Γ+
ΤΣ

ΣΤ
τττ

µ
µ

d
dx

d
dx

d
xd

, (2.4).  With source equations producing fields and with material 

bodies in those fields moving over geodesics that are identical to and synonymous with the 

Lorentz force, Maxwell’s classical electrodynamics with the Lorentz force law now rests on the 

firm geometrodynamic footing of a five-dimensional Kaluza-Klein geometry.  Now, let’s turn 

our efforts toward deriving the energy tensors and scalars associated with the foregoing. 
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7.  Calculation of the Five-Dimensional Curvature Scalar 

 We begin discussion here by deriving the five-dimensional Ricci curvature scalar 

5
5

)5( RRRR +=≡ Σ
Σ , where the ordinary four-dimensional curvature scalar σ

σRR = .  We’ll start 

with 5
5R . 

 In (6.5), we have already found 5ΒR .  So, all we need do is raise the index using  

Μ
Σ

ΣΜ
ΣΒ

ΣΜΒ
Β

ΜΒΜ −=−=−== JbFbFgbRgR κκκ 4
1

;4
1

;4
1

55 , i.e.,  

( ) ΜΣΤ
ΤΣ

ΜΤΜ
ΤΣ

Σ
Σ

ΣΜ
Σ

ΣΜΜ −=Γ+Γ+−=−= JbFFFbFbR κκκ 4
1

,4
1

;4
1

5 , (7.1) 

and then take the 5=Μ  component.  Above, we simply employ the definition of the covariant 

derivative of a second-rank contravariant tensor, particularly, of Σ
ΣΜ

;F . 

 Now, we separate (7.1) into: 

( ) µτσ
τσ

µτµ
τσ

σ
σ

σµ
σ

σµµ κκκ JbFFFbFbR 4
1

,4
1

;4
1

5 −=Γ+Γ+−=−= , and (7.2) 

( ) ΜΣΤ
ΤΣ

Τ
ΤΣ

Σ
Σ

Σ
Σ

Σ −=Γ+Γ+−=−= JbFFFbFbR κκκ 4
155

,
5

4
1

;
5

4
1

5
5 . (7.3) 

In the former equation, (7.2), we employ the same set of reductions used in (6.6), and we see that 

5
µR  contains the contravariant current source density ( ))3()2()1( ,,, JJJJ ρµ ≡ .  In (7.3), the first 

two terms can be eliminated because 05 =ΤF , so with suitable upper-to-lower-case reduction of 

Greek indexes also via 05 =ΤF , we have: 

5
4
15

4
1

;
5

4
1

5
5 JbFbFbR κκκ στ

τσ −=Γ−=−= Σ
Σ . (7.4) 

While (5.1) tells us that Σ
Μ

Σ
Μ =Γ Fbκ4

1
5 , this is the first time we have had to work with τσ

5Γ , 

and because σττσ
55 Γ=Γ , this cannot be related directly to σττσ FF −= .  So, let’s find out where  

the στ
στ FF  term comes in.   

 Another way to arrive at (7.1) from (6.5) is to write: 

( ) Μ
Σ

ΣΜ
Τ

Σ
ΒΣ

ΤΜΒ
Β

Τ
ΤΣ

ΣΜΒ
ΣΒ

ΣΜΒ
Β

ΜΒΜ −≡−=Γ−Γ+−== JbFbFgFgFgbRgR κκκ 4
1

;4
1

,4
1

55 , (7.5) 

which merely entails using the ΜΒg  to raise the indexes in a five-covariant manner.  This 

equation is identical to (7.1), just in a different form.  The 5=M  component is then: 
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( )( ) 5
4
1

;
5

4
1

5
55

,
5

4
1

5
5 JbFbFgFFFgbR κκκ τ

σ
σ

τ
τ

σ
βσ

τ
β

τ
τσ

σ
σβ

σβ −≡−=Γ−Γ−Γ+−= Σ
Σ , (7.6) 

where we again use suitable 05 =ΤF -based reductions, and have also expanded the final term 

Τ
Σ

ΒΣ
ΤΜΒΓ− Fg  in (7.5) into its spacetime and fifth-dimensional parts.  Contrasting with (6.6), we 

see that βτ
σ

βσ
τ

β
τ

τσ
σ

σβ
σ JFFF =Γ−Γ+,  is simply the lower index current density βJ .  And, in 

the remaining term, we may now employ the (5.1) substitution Σ
Τ

Σ
Τ =Γ Fbκ4

1
5 .  So, (7.6) now 

becomes: 

( ) ( ) 5
4
15

4
1

5
555

4
1

4
1555

4
1

5
5 JbJgbJgJgbFFbgJgbR κκκκκ β

β
στ

στ
β

β −=−=+−=+−= Β
Β , (7.7) 

using στ
στκ FFbJ 4

1
5 =  from (6.8), and στ

στ FFFFFFFF −=−== ΣΤ
ΣΤ

ΣΤ
ΤΣ

Τ
Σ

Σ
Τ  from following 

(6.8).   So, simply put, 5
5R  also contains the στ

στ FF  term, but it arises from the raising of the 

index in 55 JJg =Β
Β , and so contains the term combination στ

στ
β

β κ FFbgJg 4
1555 + .  It also 

helps to see 5J  directly as: 

στ
στ

β
β κ FFbgJgJ 4

15555 += , (7.8) 

This expression (7.8) will play a central role in the section 10 derivation of the Maxwell tensor.  

 Returning to compare (7.4) and (7.7), this also means that: 

στ
στβ

βστ
τσ κ FFbgJgF 4

15555 +=Γ . (7.9) 

 So, now we have all the ingredients needed to write out the five-dimensional curvature 

scalar 5
5

)5( RRR += , leaving R  as a remaining unknown still to be deduced.  Using (7.7), we 

simply write: 

β
β

στ
στ κκ JgbFFbgRRRR 5

4
1

2255
16
1

5
5

)5( −−=+= . (7.10) 

 The four-dimensional Ricci scalar σ
σRR =  is still an unknown in (7.1).  Now, let us see 

if there is a way to deduce R . 
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8.  The Einstein Hilbert Action, and Derivation of the Energy Tensor and the Ricci Tensor, 

from Five-Dimensional Variation 

 At this phase of development, we are at a juncture:  Up until this point, all of the 

development has been based on a single supposition introduced just after (2.6): the requirement 

that the Lorentz force must be represented as nothing other than geodesic motion in a five-

dimensional geometry, as implemented through (2.7) and (2.8).  Other than perhaps our 

imposing the requirement that ΝΜΜΝ −≡ FF , every step taken since then has been fully 

deductive, with no other assumptions.  We have even left open the question of whether the fifth 

dimension is timelike or spacelike, simply exploring the consequences in the alternative, as 

pertinent.  This has enabled us to place Maxwell’s equations, deductively, on a fully geometric 

footing, fully specify the fifth-dimensional components of the Ricci tensor 5
ΜR , and obtain the 

five dimensional Ricci scalar )5(R , but only up to the four-dimensional scalar σ
σRR = , which 

still stands out as undetermined.  Determining R , would give us a window into ν
µR , and this in 

turn into the remaining ν
µT  components, among which, one would expect to find the Maxwell 

stress energy tensor, which would be a final check on the validity of this entire path of 

development.  So, we need to find R .  To deduce R , we must now, finally, make a new 

supposition beyond that of Lorentz force geodesics, which we do as follows: 

 Some theorists, particularly those who have adopted the so-called “Space-Time-Matter” 

view [4], seek the derivation of Einstein’s equations out of a five-dimensional Riemannian 

geometry without the introduction of explicit matter source terms.  There are perhaps several 

ways to frame this objective: the one we shall choose here, as set forth in the introduction, will 

be to employ an Einstein-Hilbert action of the general form �= RdVS κ2
1 , omitting any source 

term Matter� , which is to say, not using an action ( )� += dVRS Matter2
1 �κ .  We do this is as 

follows: 

 Let us now posit that the action of the five-dimensional Riemannian geometry that we 

have been exploring herein, is to be defined over the four-dimensional spacetime of our common 

physical experience, in the form: 

( ) ( )�� +=≡ΜΝ dVRRdVRgS 5
5

2
1

2
1

)5(2
1

κκκ . (8.1) 
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This is a completely geometric definition of the action, without any explicit source term, of the 

general form �= RdVS κ2
1 , but in which R  is replaced by the five-dimensional scalar 

Σ
Σ= RR )5( .  

 Now, although there is no explicit source term in (8.1), the 5
5R  component serves the role 

of an implicit source term, because if one contrasts (8.1) with ( )� += dVRS Matter2
1 �κ , we see 

that one can associate:  

( ) ( ) ( )��� +≡+=≡ΜΝ dVRdVRRdVRgS Matter�κκκκ 2
1

5
5

2
1

2
1

)5(2
1 . (8.2) 

Then, employing 5
4
15

4
1

5
5 JbJgbR κκ −=−= Β

Β  from (7.7), we have now effectively defined: 

( )στ
στ

β
β

κ

κκκκ

κκ
κδκκ

FFbgJgb

JbJgbJgbRMatter

55
4
15

8
1

5
8
15

8
15

8
1

5
5

2
1

+−=

−=−=−=≡ ΜΝ
ΜΝ

Β
Β

�
. (8.3) 

Referring to the old adage that RR ν
µ

ν
µ δ2

1−  is made of “marble” but ν
µT  is made of “wood”, 

the defining of 5
5

2
1 RMatter κ≡�  allows us to fashion a ν

µT  or “marble” as well, because 5
5R  is a 

completely geometric object. 

 Now, we can use variational principles to immediate calculate the energy tensor.  

Specifically, the variation of the 5-dimensional metric tensor determinant )5(g  is specified by 

ΜΝΜΝ −=
−

−
g

g

g

g 2
11 )5(

)5( δ
δ

.  The 5-dimensional energy tensor may be defined from the matter 

term Matter�  according to: (See [6]): 

( )
Matter

MatterMatter g
gg

g

g
T �

��
ΜΝΜΝΜΝΜΝ +−=

−∂
−

−≡
δ

δ
δ

2
2

. (8.4) 

Then, we simply substitute the five-geometry-based Matter�  from (8.3) into the above, thus: 

( ) ( ) 5
8
15

4
15

4
1

2
15

4
1 JbgJbJgbgJbT κδκκδκκ ΜΝΜΝΒ

Β
ΜΝΜΝΜΝ −=−= , (8.5) 

which in mixed form may be rearranged into: 

( ) ( )Σ
ΣΝ

ΜΜ
ΝΝ

Μ −−−=− JgbJgbT 5
4
1

2
15

4
1 κδκκ , (8.6) 
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 We note from (8.5) that the four-dimensional energy tensor Β
Β−= JgbgT 5

8
1 κκ µνµν  is 

symmetric, νµµν TT −=  with 05 =µδ , but that the fifth-dimensional components ΜΝT  appear to be 

non-symmetric, because ΝΜΜΝ ≠ JJ 55 δδ .  There are two possibilities: either the fifth-

dimensional components 55 ΝΝ ≠ TT , or we will need to take steps to make this tensor symmetric.  

We defer this for the moment pending a bit more development. 

 First, the five-dimensional trace energy from (8.6) is: 

Σ
Σ

Σ
Σ ⋅−== JgbTT 5

4
1

2
3

)5( κκκ , (8.7) 

Note that the 2
3  factor arises because with an extra dimension, 5=Σ

Σδ .  If we now consider the 

Einstein equation in five dimensions as )5(2
1 RRT Ν

Μ
Ν

Μ
Ν

Μ −=− δκ , then this contracts down to 

)5(2
3

)5( RT =κ .  Therefore, from (8.7) we deduce: 

Σ
Σ−= JgbR 5

4
1

)5( κ . (8.8) 

Finally, from the inverse equation ( ))5(2
1

3
2 TTR Ν

Μ
Ν

Μ
Ν

Μ ⋅−−= δκ , we use (8.6), the factors 

13
2

2
3 =⋅  cancel out, and we arrive at: 

Μ
ΝΝ

Μ −= JgbR 5
4
1 κ . (8.9) 

 In retrospect, (8.8) and (8.9) could have been gleaned directly from (8.6), which was 

written suggestively for that very reason.  However, it is useful to confirm that this works via the 

use of the inverse filed equation, even with the extra dimension.  Lowering the upper index in 

(8.9), we obtain the covariant: 

ΜΝΜΝ −= JbR 5
4
1 δκ . (8.9) 

which also in non-symmetric in the fifth-dimensional components 55 ΝΝ ≠ RR , just like the 

energy tensor, contrast (8.5).  However, what we also deduce from (8.9) is that the covariant 

curvature tensor: 

05
4
1 =−= µνµν δκ JbR , (8.10) 
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that is: 0=µνR .  The Ν
5δ  which first made its appearance in (8.3) and (8.5), is effectively a 

“screen factor” which shuts all four-dimensional components of the covariant Ricci tensor µνR  

down to zero. 

 Although 0=µνR , this is not so for µνT , because by (8.5) and (7.8): 

( )στ
στ

β
β

µνµνµν κκκκ FFbgJggbJgbT 4
1555

8
15

8
1 +−=−= , (8.11) 

which, one ought note is symmetric in four dimensions. 

 Finally, we set out at the beginning of this section to deduce the ordinary Ricci scalar R .  

Combining (7.7) with (8.8) we may write Σ
Σ

Σ
Σ −=−=+= JgbJgbRRRR 5

4
15

4
1

5
5

)5( κκ , i.e.: 

0=R , (8.12) 

which is also consistent with (8.10).  However, the trace energy is not zero, but from (8.11), is: 

( )στ
στ

β
β κκκκ FFbgJgbJbT 4

1555
2
15

2
1 +−=−= . (8.13) 

 The derivation in this section made use of a five-dimensional variation, i.e., a variation 

using ΜΝgδ .  In section 10, we shall see how a four-dimensional variation µνδg  leads to the 

Maxwell stress energy tensor.  But first, we pause to examine the non-symmetry of the fifth-

dimensional component of the Ricci tensor, 55 ΝΝ ≠ RR , and the energy tensor 55 ΝΝ ≠ TT . 

 

9.  A Non-Symmetry Ricci Tensor for the Fifth-Dimensional Components? 

 What are we to make of the fact that 55 ΝΝ ≠ RR  and 55 ΝΝ ≠ TT  in section 8 above?  It is 

helpful to trace the origin of this non-symmetry, which we can do by directly examining  the 

definition of the Riemann tensor (6.1), together with Σ
Μ

Σ
Μ =Γ Fbκ4

1
5  form (5.1). 

 From (6.1), let’s specifically examine  

ΣΑ
Α

Β
Σ

Σ
Α

ΒΑ
Σ

ΒΑ
Α

ΑΒ
Α

ΑΒ
Α

Β ΓΓ−ΓΓ+Γ+Γ−== 555,,555 RR  (9.1) 

and contrast this to the reverse-indexed: 

ΣΑ
Α

Β
Σ

ΣΒ
Α

Α
Σ

ΒΑ
Α

ΑΒ
Α

ΒΑ
Α

Β ΓΓ−ΓΓ+Γ+Γ−== 55,5,555 RR . (9.2) 
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The first and fourth terms are clearly identical, because Β
Σ

Β
Σ Γ=Γ 55 .  The third terms are also 

identical if one renames indexes.  However, the second terms in this instance are not the same, 

and specifically: 

ΑΒ
Α

ΒΑ
Α Γ≠Γ ,55, . (9.3) 

Here, (5.17) causes 05, =Γ ΒΑ
Α  because 05, =ΜΝg ; 05, =ΜΝg , see (5.6), and this in turn, is 

because ΝΜΜΝ −= FF , i.e., because of the antisymmetric electromagnetic field tensor.  On the 

other hand, via (5.1), ΑΒ
Α

ΑΒ
Α =Γ ,4

1
,5 Fbκ , which is most certainly non-zero as a general rule, and 

which contains part of the lower-index current density σµ
σ

µ ;FJ = . 

 What we discussed above contrasting (9.1) and (9.2) has long been known, and is the 

precise problem that Einstein pointed out in [14], see his contrast of equations (4a) and (4b).  It 

has also been noted that “starting with a general (though still symmetric) connection allowed 

Eddington – and Einstein following him in 1923 – to obtain a non-symmetric Ricci tensor, the 

antisymmetric part of which could then be taken as a representation of the (antisymmetric) 

electromagnetic field tensor.” [15]  Given the foregoing, we shall accept the non-symmetric  

55 ΝΝ ≠ RR  and 55 ΝΝ ≠ TT  as is, and not attempt to make these symmetric in the 5Ν  indexes.  

That is, we shall take 55 ΝΝ ≠ RR  and 55 ΝΝ ≠ TT  uncovered in the previous section as an 

indication that in nature, wherein Maxwell’s electric charge source equation is effectively 

represented along those fifth-dimensional components, (see sections 6 and 7) the fifth-

dimensional components of  ΜΝR  and ΜΝT  are non-symmetric. 

 Therefore, we return to (8.9), which we redefine in the opposite manner as before, 

reversing Μ  and Ν , as follows: 

ΜΝΜΝ −≡ JbR 5
4
1 δκ  (9.4) 

We do this so as to be consistent with the results in section 6.  Thus, from (9.4) we find, just as in 

(6.6) and (6.7), respectively, that: 

βββ κδκ JbJbR 4
1

5
5

4
1

5 −=−=  (9.5) 

54
1

55
5

4
1

55 JbJbR κδκ −=−= . (9.6) 
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However: 

05
5

4
1

5 =−= JbR ββ δκ , (9.7) 

which demonstrates explicitly the non-symmetric character of 55 ΝΝ ≠ RR .  The fifth “column” 

5βR  of the covariant Ricci tensor contains the Maxwell source charge current density, while the 

fifth “row” β5R  is zero. 

 

10.  Derivation of the Maxwell Stress-Energy Tensor, using a Four-Dimensional Variation 

 In section 8, we derived the energy tensor based on the variational calculation (8.4), in 

five dimensions, i.e., by the variation ΜΝgδ .  Let us repeat this same calculation, but in a slightly 

different way.   

 In section 8, we used (8.3) in the form of ΝΜ
ΜΝ

Β
Β −=−= JgbJgbMatter

5
8
15

8
1 δκκ κκ� , 

because that gave us a contravariant ΜΝg  against which to obtain the five-dimensional variation 

ΜΝgMatter δδ /� .  Let us instead, here, use the very last term in (8.3) as Matter� , writing this as: 

( ) ( )ντ
τ

µ
µν

µν
µν

κστ
στ

β
β

κκ κδκκκ FFbggJgbFFbgJgbRMatter
55

4
15

8
155

4
15

8
1

5
5

2
1 +−=+−=≡� . (10.1) 

It is important to observe that the term β
β Jg5  is only summed over four spacetime indexes.  The 

fifth term, στ
στκ FFbgJg 55

4
1

5
55 = , see, e.g., (6.8).  For consistency with the non-symmetric (9.4), 

we employ µν
µν

β
β δ JgJg 55 =  rather than νµ

µν
β

β δ JgJg 55 = .  By virtue of this separation, in 

which we can only introduce µνg  and not ΜΝg  as in section 8, we can only take a four-

dimensional variation µνδδ gMatter /� , which, in contrast to (8.4), is now given by: 

( )
Matter

MatterMatter g
gg

g

g
T �

��
µνµνµνµν δ

δ
δ

+−=
−∂

−
−≡ 2

2
. (10.2) 

 Substituting from (10.1) then yields: 

( ) ( )στ
στ

β
β

κµνντ
τ

µµνκµν κκκδκ FFbgJgbgFFbgJbT 55
4
15

4
1

2
155

4
15

4
1 +−+= . (10.3) 
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Now, the non-symmetry of sections 8 and 9 comes into play, and this will yield the Maxwell 

tensor.  Because 05 =νδ , the first term drops out and the above reduces to: 

( ) ( )στ
στ

β
β

µνντ
τ

µµν κκκκκ FFbgJgbgFFbgbT 55
4
15

4
1

2
155

4
1

4
1 +−= . (10.4) 

One again, the screen factor 05 =νδ  is at work.  In mixed form, we rewrite this as: 

( ) ( )στ
στ

β
β

ν
µ

ντ
µτ

ν
µ κκδκκκ FFbgJgbFFbgbT 55

4
15

4
1

2
155

4
1

4
1 ++−=− . (10.5) 

Purposely leaving constant factors separated, the trace equation is then:  

( )στ
στ

β
β κκκκ FFbgbJgbRT 55

4
1

4
15

4
12 −−== . (10.6) 

and so, via the inverse equation TTR κδκ ν
µ

ν
µ

ν
µ +−= , from (10.5) and (10.6): 

( ) ( )στ
στ

β
β

ν
µ

ντ
µτ

ν
µ κκδκκ FFbgJgbFFbgbR 55

4
15

4
1

2
155

4
1

4
1 3 −−+−= . (10.7) 

Note that here, traceable to the lost term in (10.4) via 05 =νδ , that one cannot simply glean ν
µR  

from (10.5) as we were able to for (8.9).  It was necessary to use the full inverse field equation 

TTR κδκ ν
µ

ν
µ

ν
µ +−= .  Now, we take the trace of (10.7) to obtain: 

( )στ
στ

β
β κκκ FFbgbJgbR 55

4
1

4
15

4
1 36 −−= . (10.8) 

Interestingly, this does not look to be the same as the trace in (10.6), yet these are the same. This 

means that a further relationship must subsist.  So, setting (10.6) equal to (10.8): 

( ) ( )στ
στ

β
β

στ
στ

β
β κκκκκκ FFbgbJgbFFbgbJgbR 55

4
1

4
15

4
155

4
1

4
15

4
1 362 −−=−−= , (10.9) 

we find after reducing, that: 

( )στ
στ

β
β κ FFbgJg 55

4
1

2
15 −= , (10.10) 

 Now, we return to the energy tensor (10.5) and shift some terms to rewrite this as: 

( ) ( ) β
β

ν
µ

στ
στ

ν
µ

ντ
µτ

ν
µ κδκκδκκκ JgbFFbgbFFbgbT 5

2
155

4
1

2
155

4
14 −−= . (10.11) 

Then, we substitute β
β Jg5  from (10.10) into (10.11), and do some further rearranging, including 

making use of c�/2
2

κκ = , to obtain: 
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�
�

�
�
�

� −== στ
στ

ν
µ

ντ
µτ

ν
µ

ν
µ δ

κ
κ

FFFFgcT
b

T
b 4

1816 55
222
� . (10.12) 

If we now set 1== c�  as well as: 

82 =b  and 155 −=g , (10.13) 

then (10.12) now reduces, rather fortuitously, to the Maxwell stress-energy tensor:   

( )στ
στ

ν
µ

ντ
µτ

ν
µ δ FFFFT 4

1−−= ,  (10.14) 

in the Heaviside-Lorentz units that we have been employing from the outset.  The factor b  

which we have employed all along is now determined to be 82 =b .  Further, because we have 

deduced that 155 −=g  we no longer need to straddle between a timelike and a spacelike fifth 

dimension: we have deduced that the fifth dimension must be spacelike. 

 We can then also derive the mixed Ricci tensor corresponding to the stress-energy 

(10.14).  We start with (10.7), substitute (10.10), and reduce, to obtain: 

( ) ( )στ
στ

ν
µ

ντ
µτ

ν
µ κδκ FFgbFFgbR 5522

4
1552216 +−= . (10.15) 

Clearly, this is also traceless, as it should be.  Further use of c�/2
2

κκ =  with 1== c� , and 

82 =b  and 155 −=g  from (10.13), then reduces to: 

( )στ
στ

ν
µ

ντ
µτ

ν
µ δκ FFFFR 4

1−= , (10.16) 

which is summarized by the traceless field equation ν
µ

ν
µκ RT =− , as expected. 

 Finally, in being able to derive the traceless equation (10.14) which among many things 

tells us that electromagnetic energy propagates at the speed of light, we have solved the essential 

riddle which concerned Einstein in [16], see equations (1) versus (1a) and (3) therein, which was 

to find a compatibility between the field equation RRT ν
µ

ν
µ

ν
µ δκ 2

1−=−  which contains a non-

zero scalar trace, and (10.14) and (10.16) above which are scalar-free.  More fundamentally, 

since (10.14) was derived by rigorously applying the field equation RRT ν
µ

ν
µ

ν
µ δκ 2

1−=− , we 

have demonstrated that Einstein’s equation, which one ordinarily applies to trace matter which 

can be placed at rest, is also fully compatible with, and is indeed the foundation for, the energy 

tensor of traceless, luminous electromagnetic radiation.
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