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Abstract:  
 We examine a general Kaluza-Klein theory of classical electrodynamics and 

gravitation in a five-dimensional Riemannian geometry.  Based solely on the condition that 

the electrodynamic Lorentz force law must describe geodesic motion in this five-

dimensional geometry, it appears possible to place all of Maxwell’s electrodynamics, the 

theory of electrodynamic potentials, and the QED action on a solid geometrodynamic 

footing, for weak and strong electro-gravitational fields.  We make no choice as between 

the fifth dimension being timelike or spacelike, but simply point out the impact in those 

places where this choice makes a difference.  We also show, if the fifth dimension is chosen 

to be a compact, cylindrical spacelike dimension, that motion in this fifth dimension may be 

synonymous with intrinsic spin, and that the radius of the compact dimension, for a 

electromagnetic coupling on the order of unity, is equal to the Schwarzschild radius of the 

geometrodynamic vacuum first explored by Wheeler. 
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1.  Introduction 
 

 The possibility of employing a fifth spacetime dimension to unite classical gravitation 

and electrodynamics has intrigued physicists for almost a century.  [1], [2]   Early theorists 

became perhaps overly-occupied with making assumptions about the scale or topology of the 

extra coordinate dimension. [3]  Following the path of Wesson and other current-day theorists 

[4], we seek here to expose the main features of Kaluza- Klein theory irrespective of any 

particular model, and most importantly, to make the connection between Einstein’s gravitation 

and Maxwell’s electrodynamics which is offered by Kaluza-Klein theories as clear and solid as 

possible, and as independent as possible of the detailed choice of model. 

 Most fundamentally, we adopt the view of the above-noted theorists that matter and 

electrodynamic charge are “induced” in observed four dimensions of spacetime, from a vacuum 

in five dimensions, and so, in keeping with the spirit of Wheeler’s program, [5] are of completely 

geometrodynamic origin.  Particularly, we seek to show how classical electrodynamics emerges 

entirely from an Einstein-Hilbert Action of the general form �= RdVS k
1  where R  is a suitably-

defined Ricci curvature scalar, integrated over a suitable multidimensional spacetime volume, 

and k  is a constant.  The reader will observe that this omits any Lagrangian density Matter�  of 

matter, i.e., that it is not of the form ( )� += dVLkRS Matter  and so is in the nature of a vacuum 

action equation.  In different terms, we seek to induce the entirely of Maxwell's electrodynamics 

with sources, particularly its Lagrangian density ( )µ
µστ

στ jAFFQED −=� , 1== c�  out of a 

gravitationally-based vacuum.  

   The main line of development will be based on a single proposition: we shall require 

that the Lorentz force of electrodynamics, 
ττ

τ

τ
µ

µ

d
dx

qF
d

xd
m =2

2

, must be represented as fully 

geodesic motion in the five-dimensional geometry. 

 In five dimensions, we shall employ ΝΜΜΝ ≡ gg  with 5,3,2,1,0, =ΝΜ  for  the metric 

tensor, so µνg  with 3,2,1,0, =νµ  is the ordinary metric tensor in the spacetime subspace.  
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Inverses are defined in the usual manner according to Ν
Μ

ΣΝ
ΜΣ = δgg  and so ΜΣg  and ΣΝg  raise 

and lower indexes in the customary manner. 

 While most authors treat the fifth dimension as spacelike and a few have considered this 

to be timelike, e.g., [6], [7], [8], we shall approach the fifth dimension as independently of this 

choice as possible.  Where this choice does make a difference, we shall point this out.  If we 

define ΜΝΜΝΜΝ +≡ hg κη  in the usual manner with 516 cG �πκ = , then for the weak-field 

limit ΜΝΜΝ → ηg .  If the fifth dimension is timelike, ( ) ( )1,1,1,1,1diag +−−−+=ΜΝη ; if it is 

spacelike, then ( ) ( )1,1,1,1,1diag −−−−+=ΜΝη .  In either case, 0=ΜΝη  for Ν≠Μ .  Note that the 

constant κ  in Einstein’s equation RRT ν
µ

ν
µ

ν
µ δκ 2

1−=−  is related to the foregoing κ , with 

fundamental constants restored, by 42

2
1 8 cGc πκκ == � , with the overbar used to distinguish 

these two constants κκ , . 

 

2.  Geodesic Motion in Five Dimensions, and the Lorentz Force 

 We start by maintaining the usual interval in the 4-dimensional spacetime subspace, 

using νµ
µντ dxdxgd =2 , and define the five-space interval as: 

55
55

5
5

2

55
55

5
5

5
5

2

2 dxdxgdxdxgd

dxdxgdxdxgdxdxgdxdxgdxdxgd

++=

+++=≡Τ ΝΜ
ΜΝ

σ
σ

µ
µ

ν
ν

νµ
µν

τ
. (2.1) 

The above is independent of whether the weak field 15555 ±=→ηg , i.e., of whether the fifth 

dimension is timelike or spacelike, and is generally model-independent. 

 Like any metric equation, (2.1) can be algebraically-manipulated into: 

ΤΤ
=

ΝΜ

ΜΝ d
dx

d
dx

g1 , (2.2) 

which is the first integral of the equation of motion.  In five dimensions, we specify the 

Christoffel connections in the usual manner, that is, ( )ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΣΤ
Μ −+=Γ ,,,2

1 gggg , hence 

ΤΣ
Μ

ΣΤ
Μ Γ=Γ .  We employ 0; =ΣΜΝg  as usual, with the usual first rank covariant derivative 

Α
ΑΣ

Μ
Σ

Μ
Σ

Μ Γ+= AAA ,; .  We then take the covariant derivative of each side of (2.2) above, and 
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after the usual reductions employed in four dimensions, and multiplying the result through by 
22 / τddΤ , we arrive at the five-dimensional geodesic equation: 

02

2

=Γ+
ΤΣ

ΣΤ
Μ

Μ

τττ d
dx

d
dx

d
xd

. (2.3) 

 The above is five independent equations.  We are interested for now in the four equations 

for which µ=Μ , which specify motion in ordinary spacetime: 

02

2

=Γ+
ΤΣ

ΣΤ
τττ

µ
µ

d
dx

d
dx

d
xd

. (2.4) 

This expands, using the metric tensor symmetry ΝΜΜΝ = gg , to: 

02
55

55

5

52

2

=Γ+Γ+Γ+
τττττττ

µ
σ

σ
µ

τσ

στ
µ

µ

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
xd

. (2.5) 

Now, let us contrast (2.5) above to the gravitational geodesic equation which includes the 

Lorentz force law, namely, equation (20.41) of [9]: 

02

2

=−Γ+
ττττ

σ

σ
µ

τσ

στ
µ

µ

d
dx

F
m
q

d
dx

d
dx

d
xd

. (2.6) 

 We now take a critical step:  We require that the Lorentz force as expressed above, must 

be represented as nothing other than geodesic motion in the five-dimensional geometry.  The 

first two terms in (2.5) and (2.6) are identical, and they specify geodesic motion in an ordinary 

gravitational field absent any electrodynamic fields or sources.  The absence of any mass or 

charge in the first two terms captures the Galilean principle of equivalence and expresses 

Newtonian inertial motion in a gravitational field via the Christoffel connections στ
µΓ . 

 If we require the Lorentz force to also be fashioned as geodesic motion through 

geometry, then we can do so by defining the third terms in (2.5) and (2.6) to be equivalent to one 

another, and the fourth term in (2.5) to be zero.  Therefore, we now define: 

τττ

σ

σ
µ

σ

σ
µ

d
dx

F
m
q

d
dx

d
dx −≡Γ

5

52 , and (2.7) 

055 ≡Γµ . (2.8) 
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One might wish to consider 055 ≠Γµ , in which case 
ττ

µ

d
dx

d
dx 55

55Γ  in (2.5) would become an 

additional term in the Lorentz force law, but in the absence of experimental evidence for any 

deviations from the Lorentz force law, we shall proceed on the basis of (2.8). 

 The relationships (2.7) and (2.8), ensure that Lorentz force motion is in fact, no more and 

no less than geodesic motion in five dimensions.  All else will be deduced from (2.7) and (2.8). 

 

3.  Placing the Lorentz Force on a Geometrodynamic Footing as Geodesic Motion 

 Now, let us focus on equation (2.7).  We can divide out τσ ddx   from (2.7), and then 

write the remaining terms as. 

m
q

F
cd

dx
σ

µ
σ

µ

τ 5

5

5
1

2
�

−≡Γ , (3.1) 

where we have explicitly restored 1== c� .  Now, we separate the proportionalities 

mqddx ∝τ5  and σ
µ

σ
µ F−∝Γ 52 , and turn the proportionalities ∝  into equalities by restoring 

their dimensional and numeric constants, starting with the former proportionality. 

 Irrespective of whether the fifth dimension is timelike or spacelike, we take 5dx  to be 

given in dimensions of time, so that τddx5  is a dimensionless ratio.  In the event that the fifth 

dimension is spacelike, one need merely divide through by c .  In rationalized Heaviside-Lorentz 

units, the electric charge strength q  (for a unit charge such as the electron, muon and tauon) is 

related to the dimensionless (running) coupling cq �πα 42=  which approaches 036.137/1→α  

at low energy.  The value of α  is the same in all systems of units but the numerical value of q  is 

different, so it is imperative that the exact expression for mqddx ∝τ5  be based on α  rather 

than q , and be independent of where the π4  factor appears.  Further, to match dimensions with 

c�  the mass m  needs to be multiplied by a factor of G .  Taking all of this into account, we 

now define: 

m
q

cm
q

GmG
c

d
dx

κπ
α

τ 2
11

4
1

4
1

4
1

5

5

�

� −=−=−≡ . (3.2) 
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The equivalence between the first two terms is independent of the system of units but the final 

term is in Heaviside-Lorentz units.  There is freedom in the overall multiplicative numeric 

constant, which we choose to be 4
1− .  This choice is made because in the downstream 

development several sections hence, it leads to the correct constant factors in the QED 

Lagrangian and in the Maxwell stress energy tensor. 

 Then, we substitute (3.2) into (3.1) to obtain: 

σ
µ

σ
µ

σ
µ κπ

FF
c

G =≡Γ 55
16
�

. (3.3) 

As between (3.2) and (3.3), the placing of 4
1−  in (3.3) causes σ

µF  to be related to σ
µ

5Γ  by the 

simple constant of proportionality κ  from ΜΝΜΝΜΝ +≡ hg κη .  The definitions (3.2) and (3.3), 

together with 055 ≡Γµ  from (2.8), when substituted into (2.5), turn the five-dimensional 

geodesic equation (2.5) into the Lorentz force law, and places this electrodynamic motion onto a 

totally-geometrodynamic footing.  Of course, (3.3) is of further value, because it also relates the 

mixed field strength tensor σ
µF  to the axial connection components σ

µ
5Γ , and this will lead to 

numerous other results.  Although the ΣΤ
ΜΓ  not themselves tensors in general, (3.3) does suggest 

that that particular components σ
µ

5Γ  do transform in the same way as the mixed tensor σ
µF , 

multiplied by a the constant factor κ . 

 

4.  Timelike versus Spacelike for the Fifth Dimension, and a Possible Connection to 

Intrinsic Spin 

 The results above are independent of whether the extra dimension is timelike or 

spacelike.  Transforming into an “at rest” frame, 0321 === dxdxdx , the spacetime metric 

equation νµ
µντ dxdxgd =2  reduces to 0

00 dxgd ±=τ , and (3.2) becomes: 

m
q

G
g

dx
dx

π44
1 00

0

5

±= . (4.1) 

 For a timelike fifth dimension, 5x  may be drawn as an “axial time” axis orthogonal to 0x , 

and the physics ratio mq /  (which, by the way, results in the mq /  material body in an 
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electromagnetic field actually “feeling” a Newtonian force in the sense of maF = ) measures the 

“angle” at which the material body moves through the 05 , xx  “time plane.”   

 For a spacelike fifth dimension, where a compactified, hyper-cylindrical φRx ≡5  (see 

[10], Figure 1) and R  is a constant radius (distinguish from the Ricci scalar by context), 

φRddx ≡5 .  Substituting this into (3.2), leaving in the ±  ratio obtained in (4.1), and inserting c  

into the first term to maintain a dimensionless equation, then yields: 

m
q

GmG
c

cd
Rd

π
α

τ
φ

4
1

4
1

4
1 ±=±= �

. (4.2) 

We see that here, the physics ratio mq /  measures an “angular frequency” of fifth-dimensional 

rotation.  Interestingly, this frequency runs inversely to the mass, and by classical principles, this 

means that the angular momentum is independent of the mass, i.e., constant.  If one doubles the 

mass, one halves the tangential velocity, while the radius stays constant.  Together with the ±  

factor, one might suspect that this constant angular momentum is related to intrinsic spin.  In 

fact, following this hunch, one can arrive at an exact expression for the compactification radius 

R , in the following manner: 

 Assume that 5x  is spacelike, casting one’s lot with the preponderance of those who study 

Kaluza-Klein theory.  In (4.2), move the c  away from the first term and move the m  over to the 

first term.  Then, multiply all terms by another R .  Everything is now dimensioned as an angular 

momentum, which we have just ascertained is constant irrespective of mass.  So, set this all to 

�n2
1± , which for 1=n , represents intrinsic spin.  The result is as follows: 

�
�

nqR
G

c
R

G
c

R
d

Rd
m

2
1

44
1

4
1 3

±=±=±=
π

α
τ
φ

. (4.3) 

Now, take the second and fourth terms, and solve for R  with 1=n , to yield: 

PL
c
G

R
αα
22

3 == �
, (4.4) 

where 3cGLP �=  is the Planck length.  This gives a definitive size for the compactification 

radius, and it is very close to the Planck length.  What is of interest, is that α  is a running 

coupling.  At low probe energies, where 036.137/1→α , PLR ⋅= 412.23 .  However, this is just 
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the apparent radius relative to the low probe energy.  If one were to probe to a regime where α  

becomes large, say, of order unity, 1=α  then PLR 2=  is actually identical with the 

Schwarzschild black hole radius PS LR 2=  of the geometrodynamic vacuum “foam.” [9] at 

§43.4, [11]*  Since we have based the foregoing on a unit charge with spin ½, and since this is 

independent of the mass, the foregoing would appear to characterize the compactification radius 

R  for all of the charged leptons, and to provide a geometric foundation for intrinsic spin!  

Further, it suggests that for 1=α , the Schwarzschild radius of the vacuum is synonymous with 

the compactication radius of the fifth dimension, PS LRR 2== .  This, by the way, is another 

consequence of placing the 4
1−  factor in (3.2). 

 

5.  Symmetric Gravitation and Antisymmetric Electrodynamics 

 Now, let us turn back to the association σ
µ

σ
µ κF=Γ 5  in (3.3), which arises from the 

requirement that the Lorentz force be represented as geodesic motion in five dimensions.  We 

know that νµµν FF −=  is an antisymmetric tensor.  By virtue of (3.3), this will place certain 

constraints on the five-dimensional Christoffel connections ( )ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΣΤ
Μ −+=Γ ,,,2

1 gggg , 

and it is important to find out what these are.  These constraints, in the next section, will provide 

the basis for placing Maxwell’s equations onto a purely geometrodynamic footing. 

 First, because we are working in five dimensions, we will find it desirable to generalize 
µνF  to ΜΝF .  We make no a priori supposition about the additional components in ΜΝF , other 

than to require that they be antisymmetric, ΝΜΜΝ −≡ FF .  Any other information about these 

new components is to be deduced, not imposed.  Second, we generalize (3.3) into the full five 

dimensions, thus: 

Σ
Μ

Σ
Μ =Γ Fκ5 . (5.1) 

By virtue of (2.8), 055 ≡Γµ , we may immediately deduce that: 

                                                 
* By way of review, the Planck mass, defined from the term atop Newton’s law as a mass for which cGM P �=2

, 

is thus GcM P �= .  In the geometrodynamic vacuum, the negative gravitational energy between Planck 

masses separated by the Planck length 3cGLP �=  precisely counterbalances and cancels the positive energy of 

the Planck masses themselves.  The Schwarzschild radius of a Plank mass PPS LcGcGMR 22/2 32 === � . 
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0555 ==Γ µµ κF . (5.2) 

 As it stands, Σ
ΜF  is a mixed tensor, and it would be better to raise this into contravariant 

form where we can clearly examine the consequences of having an antisymmetric field strength 
ΝΜΜΝ −≡ FF .  Thus, let us now raise the lower index in (5.1), and at the same time equate this 

to the Christoffel connections, as such: 

( )ΑΣΣΑΣΑ
ΣΝΜΑ

Σ
ΜΣΝ

Σ
ΜΣΝΜΝ −+=Γ== ,55,,52

1
5 ggggggFgF κκ . (5.3) 

Now, we use (5.3) to write ΝΜΜΝ −= FF  completely in terms of the metric tensor ΜΝg  and its 

first derivatives, as: 

( ) ( )ΑΣΣΑΣΑ
ΣΜΝΑ

ΑΣΣΑΣΑ
ΣΝΜΑΝΜΜΝ −+−=−+=−= ,55,,5,55,,5 ggggggggggFF κκ . (5.4) 

Renaming indexes, and using the symmetry of the metric tensor, this is readily reduced to:: 

05, =ΤΣ
ΤΝΜΣ ggg . (5.5) 

This is an alternative, geometric way of saying that ΝΜΜΝ −= FF . 

 We can further simplify this using the inverse relationship Σ
Ν

ΤΣ
ΤΝ = δgg , which we can 

differentiate to obtain ( ) 0,,, =+= ΑΤΣ
ΤΝ

ΤΣΑ
ΤΝ

ΑΤΣ
ΤΝ gggggg , i.e., ΤΣΑ

ΤΝ
ΑΤΣ

ΤΝ −= gggg ,, .  This 

can then be used with 5=Α  to reduce (5.4) to the very simple expressions, for both the 

covariant and contravariant metric tensor: 

05, =ΜΝg ; 05, =ΜΝg . (5.6) 

All components of the metric tensor are constant over the variations taking place only through  

the fifth dimension. 

 Now, we return to write out ( ) 0,555,55,52
1

55 =−+=Γ ΑΑΑ
Α gggg µµ  from (2.8), see also 

(5.2).  Combined with 05, =ΜΝg  above and ΤΣΑ
ΤΝ

ΑΤΣ
ΤΝ −= gggg ,,  we further deduce that: 

0,
55 =Αg ; 0,55 =Αg  (5.7) 

This means, quite importantly, that constant55 =g  and constant55 =g , everywhere in the five-

dimensional geometry. 
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 To fix these constant values, consider the weak-field limit ΜΝΜΝ → ηg .  If the fifth 

dimension is timelike, ( ) ( )1,1,1,1,1diag +−−−+=µνη  and 155
55 +== gg .  If it is spacelike 

(leading to the intrinsic spin results of section 4), then ( ) ( )1,1,1,1,1diag −−−−+=ΜΝη  and 

155
55 −== gg .  But, by (5.7), if the above expressions for 55g  and 55g  are true anywhere, then 

155
55 +== gg  or 155

55 −== gg  are true everywhere, respectively, for a timelike or spacelike 

fifth dimension.  In either case, timelike or spacelike, 155
55 =gg .  As a result, the inverse relation 

11 5
5

5
5

55
55

5
5

5
5 ==+=+=Τ

Τ δτ
τ

τ
τ gggggggg , leads also to the null condition: 

05
5 =τ

τ gg , (5.8) 

which applies irrespective of the timelike versus spacelike choice. 

 Finally, using (5.1) together with (5.6) and (5.7), we may deduce: 

( ) 0,555,55,5
5

2
1

55
5

5
5 =−+=Γ= ΑΑΑ

Α ggggFκ . (5.9) 

Taking this together with (5.2), 0555 ==Γ µµ κF , we have now deduced that all of the newly-

introduced axial components for the mixed field tensor are zero, i.e., 

0555 =Γ= ΜΜFκ . (5.10) 

 The free index above can easily be lowered to also find that the covariant: 

055 =−= ΜΜ FF . (5.11) 

But, since the non-diagonal components of ν
µF  are non-zero, one should take care to ensure that 

the contravariant tensor components 055 =−= ΜΜ FF  as well, that is, we want to make sure that 

the fixed index 5 in (5.10) can properly be raised.  One can employ (5.1) together with the 

explicit components for Σ
ΜΓ 5  to write: 

( )ΑΣΣΑΣΑ
ΜΑΣΝ

Σ
ΜΣΝ

Σ
ΜΣΝΜΝ −+=Γ== ,55,,52

1
5 ggggggFgF . (5.12) 

Expanding this to separate the µ  from the 5 components, and applying (5.6), (5.7) and (5.8) as 

needed, together with ΝΜΜΝ −= FF  to eliminate the only term which (5.6), (5.7) and (5.8) 

cannot directly eliminate, one can indeed deduce that in addition to (5.10) and (5.11): 
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055 =−= ΜΜ FF . (5.13) 

Now, the free index can be easily lowered, referring also to (5.1), to find that: 

05
5

5
55 =Γ=Γ= ΜΜΜFκ . (5.14) 

So, we find that all of the newly-introduced axial components of the field strength tensor, 

whether in raised, lowered, or mixed form, are equal to zero.  Equations (5.10), 055 =ΓΜ , and 

(5.14), 05
5

5
5 =Γ=Γ ΜΜ , taken together, tell us that as well that any Christoffel connection with 

two or more axial indexes, is also equal to zero. 

 Combining (5.1) with 055 =−=Μ MFF  as well as 055 =−= ΜΜ FF , we may deduce two 

further relationships: 

05
5

5
5 =Γ−=Γ Σ

ΜΣ
Σ

ΣΜ gg  and  05555 =Γ−=Γ Τ
Μ

Μ
Μ

ΤΜ gg , (5.15) 

which are variations of the “two or more axial index” rule noted above. 

 It is also helpful as we shall soon see when we examine the Riemann tensor, to make note 

of the fact that: 

( ) ( ) 05,,5,,5,,2
1

,,,5,2
1

5, =−++−+=Γ ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΑΣΤΣΤΑΤΑΣ
ΜΑ

ΣΤ
Μ gggggggg . (5.16) 

This makes use of (5.6) and the fact that ordinary derivatives commute.  A further variation of 

(5.16) employs (5.1) to also write, for the field strength tensor: 

05,5,5 ==Γ Σ
Μ

Σ
Μ Fκ . (5.17) 

Again, at bottom, every result in this section is a consequence of relationship (5.1), taken in 

combination with the antisymmetric field strength ΝΜΜΝ −≡ FF .  Now, we turn to the Riemann 

tensor, and Maxwell’s equations. 

 

6.  Maxwell’s Equations as Pure Geometry 

 We have shown how Lorentz force motion might be described as simple geodesic motion 

in a five-dimensional Kaluza-Klein spacetime.  But equations of motion are only one part of a 

complete field theory.   The other part is a specification of how the “sources” of that theory 

influence the “fields” originating from those sources.  In a complete theory, the equations of 



12 

motion then describe motion through the fields originating from the sources.  It is now time to 

place Maxwell’s equations on a firm geometric footing.  

 In five dimensions, we of course specify the Riemann tensor in the usual way, albeit with 

an extra axial index.  That is: 

ΣΝ
Α

ΒΜ
Σ

ΣΜ
Α

ΒΝ
Σ

ΜΒΝ
Α

ΝΒΜ
Α

ΒΜΝ
Α ΓΓ−ΓΓ+Γ+Γ−= ,,R . (6.1) 

Now, let’s consider the 5=Μ  component of this equation, that is: 

ΣΝ
Α

Β
Σ

Σ
Α

ΒΝ
Σ

ΒΝ
Α

ΝΒ
Α

ΝΒ
Α ΓΓ−ΓΓ+Γ+Γ−= 555,,55R . (6.2) 

 By virtue of 05, =Γ ΣΤ
Μ , equation (5.16), which is in turn a consequence of 05, =ΜΝg , 

which is in turn a consequence of ΝΜΜΝ −≡ FF , the second term zeros out, and (6.2) becomes: 

ΣΝ
Α

Β
Σ

Σ
Α

ΒΝ
Σ

ΝΒ
Α

ΝΒ
Α ΓΓ−ΓΓ+Γ−= 55,55R . (6.3) 

Substituting (5.1), i.e., Σ
Μ

Σ
Μ =Γ Fκ5  into the above, and with some minor term rearrangement, 

we immediately arrive at the very critical expression:  

( ) ΝΒ
Α

Σ
Α

ΒΝ
Σ

Β
Σ

ΣΝ
Α

ΝΒ
Α

ΝΒ
Α −=Γ−Γ+−= ;,5 FFFFR κκ . (6.4) 

In particular, these three remaining terms of ΝΒ
Α

5R  turn out to be identical with the expression 

for the gravitationally-covariant derivative ΝΒ
Α

;F  of the mixed field strength tensor, times the 

constant factor κ− .  This will lead us immediately to a geometric foundation for Maxwell’s 

equations in the following way: 

 As regards Maxwell’s electric charge equation, we contract (6.4) down to its Ricci tensor 

component and define a five-current ΒJ  with covariant 5-space index: 

( ) ΒΣΒ
Σ

Τ
Σ

ΒΣ
Τ

Β
Τ

ΤΣ
Σ

ΣΒ
Σ

ΣΒ
Σ

Β −≡−=Γ−Γ+−== JFFFFRR κκκ ;,55 . (6.5) 

We will now want to see how ΒJ  relates to the observed four-current σβ
σ

β ;Fj =  of 

electrodynamics.  We first expand the Σ  and Τ  indexes into spacetime and axial parts, and use 

05
5 =Γ Τ  and 05 =ΤF  from (5.14) to zero out some terms (but not any of the covariant 

derivatives, for reasons to soon become apparent), to obtain: 

( ) ( ) ΒΒΒΒΒΒΒ −≡+−=Γ−Γ+−= JFFFFFR κκκ σ
σ

τ
σ

σ
ττ

τσ
σ

σ
σ

5;
5

;,5 . (6.6) 
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 Now, we split the above into two equations, namely: 

( ) ( ) ββσβ
σ

τ
σ

βσ
τ

β
τ

τσ
σ

σβ
σ

β κκκ JFFFFFR −≡+−=Γ−Γ+−= 5;
5

;,5 , and (6.7) 

( ) ( ) 55;5
5

;555,555 JFFFFFR κκκ σ
σ

τ
σ

σ
ττ

τσ
σ

σ
σ −≡+−=Γ−Γ+−= . (6.8) 

In (6.7), we discern the four-covariant derivative τ
σ

βσ
τ

β
τ

τσ
σ

σβ
σ

σβ
σ FFFF Γ−Γ+= ,; , which 

means that 05;
5 =βF  and that ββ jJ =  is the observed electromagnetic current source density.  

We may therefore reduce (6.7) to: 

βσβ
σ

β κκ jFR −≡−= ;5 . (6.9) 

This is Maxwell’s electric charge equation, on a geometric foundation. 

 For the axial equation (6.8), we use 05 =ΣF  to reduce terms as before, but we also 

employ the substitution Σ
Μ

Σ
Μ =Γ Fκ5  from (5.1).  Thus: 

( ) 0555;5
5

;5
2

55 ≠−≡−≡+−=−= jJFFFFR κκκκ σ
σ

τ
σ

σ
τ . (6.10) 

Interestingly, despite the 5;5
5

;5 FF +σ
σ  term containing two mixed tensors which both vanish in 

their own right, this term for 55R  is not equal to zero.  Rather, we find that the covariant 

derivative term 5;5
5

;5 FF +σ
σ  does not vanish, and in fact, leaves a very central term στ

στ FF   

found  in the QED free-field Lagrangian στ
στ FFFreeQCD 4

1
)( −=�  and in the Maxwell stress-energy 

tensor ( )στ
στ

ν
µ

νσ
µσ

ν
µ δ FFFFT Maxwell 4

1−−=  in Heaviside-Lorentz units.  Contrasting (6.10) with 

(6.9), it is apparent that 05;5
5 =F , but that 0;5 ≠= στ

στ
σ

σ FFF .  This is the first of several 

instances where we will find that a covariant derivative of 05 =ΤF  or its covariant and 

contravariant relatives, is non-zero.  One may think of 0;5 ≠= στ
στ

σ
σ FFF  as being 

“gravitationally induced” out of 05 =σF , solely as a non-linear gravitational effect, because in 

the absence of gravitation, covariant derivatives approach ordinary derivatives and so 

0,5;5 =→ σ
σ

σ
σ FF .  Consolidating (6.9) and (6.10) together for contrast, we see that the five-

vector for 5ΒR  is given by: 
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( )
��

�
�
�

−=−=−=

Γ−Γ+−=−=−=

στ
στ

σ
σ

τ
σ

βσ
τ

β
τ

τσ
σ

σβ
σ

βσβ
σ

β

κκκ
κκκ

FFjFR

FFFjFR
2

5;555

,;5 , (6.11) 

which we consolidate to: 

σ
σκκ ;5 ΒΒΒ −=−= FjR . (6.12) 

The other consolidated relationship, emerging from 05;
5 =βF  and 05;5

5 =F , is: 

05;
5 =ΒF . (6.13) 

We make a special point of this, because when we consider the Ricci tensor in mixed form, e.g., 

5
ΒR , we will find that the terms analogous to (6.13) become non-zero as well (just like σ

σ
;5F  in 

(6.11)), and contribute an “axial” component to the currents which may help to resolve the 

chirality problems often found in Kaluza-Klein theory.  It is already worth noting from (6.11), 

that ψγψ ββ =j  is a vector current, so that ψγψ 55 ∝j  will most certainly be a pseudoscalar.  We 

use the proportionality for 5j , because we have not chosen a representation of the 5-D Clifford 

algebra { } ΜΝΝΜ ≡ΓΓ g,2
1 , and although the intrinsic spin results of section 4 herein seem to lean 

spacelike, this exact choice of representation does depend upon whether the fifth dimension is 

timelike or spacelike, see., e.g., [10], section 3. 

 Turning now to Maxwell’s magnetic equation, we first lower the Α  index in (6.4), and 

use ΜΝΑΒΑΒΜΝ = RR  to write: 

( ) ΝΒ
Α

ΜΑΣ
Α

ΒΝ
Σ

ΜΑΒ
Σ

ΣΝ
Α

ΜΑΝΒ
Α

ΜΑΝΒ
Α

ΜΑΝΜΒ −=Γ−Γ+−== ;,55 FgFgFgFgRgR κκ . (6.14) 

Maxwell’s magnetic equation then arises straight from the 5-dimensional rendition of the “first” 

Bianchi identity: 

0=++ ΜΒΝΑΜΑΒΝΜΝΑΒ RRR . (6.15) 

Making use of (6.14), the 5=Μ  component of this is: 

( ) ( ) 0,,,;;;555 =++−=++−=++ ΒΝΑΑΒΝΝΑΒΒΝΑΑΒΝΝΑΒΒΝΑΑΒΝΝΑΒ FFFFFFRRR κκ , (6.16) 

where we account for the well-known fact that in the cyclic combination of (6.16) with 

antisymmetric tensors, the Christoffel terms in the covariant derivatives cancel identically, so the 
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covariant derivatives becomes ordinary derivatives.  In the ηαβ=ΝΑΒ  subset of this, we 

immediately obtain Maxwell’s magnetic equation 

0,,, =++ βνααβνναβ FFF . (6.17) 

 In light of our earlier discovery of some new terms in Maxwell’s electric charge equation 

arising from the fifth dimension, see, e.g., the 55R  equation in (6.11), one may ask whether there 

are any additional electrodynamic terms in the (6.16) above, in the circumstance where more 

than a single axial index is employed.  Because ΒΑΜΝΜΝΑΒΑΒΜΝ −== RRR , it is clear that with 

more than two axial indexes, i.e., µ555R , (6.16) will identically reduce to zero.  But we should 

explore whether there is any additional electrodynamic information to be gleaned when exactly 

two axial indexes are used in (6.16).  Thus, we may examine, say: 

( ) ( ) 0,5,55,;5;55;555555 =++−=++−=++ ΒΑΑΒΑΒΒΑΑΒΑΒΑΒΑΒΑΒ FFFFFFRRR κκ . (6.18) 

We learn from (6.11), especially στ
στ

σ
σ κκ FFFR

2
;555 −=−= , not to automatically eliminate a 

field strength term such as 5
σF  when it appears in a covariant derivative, i.e., σ

σ
;5F .  However, 

the migration of covariant to ordinary derivatives in the cyclic combination of (6.16) removes 

this complication.  We know from (5.11) that 055 == ΑΒ FF  as so their ordinary derivatives will 

vanish as well.  The remaining term ( ) 05,5,5,5, =+== Β
Σ

ΑΣΒ
Σ

ΑΣΒ
Σ

ΑΣΑΒ FgFgFgF  in (6.18), by 

virtue of (5.6) and (5.17).  Thus, (6.18) is identically equal to zero, not only because of the 

Bianchi identity, but because of the inherent properties of the ΑΒF  and ΑΒg  developed in section 

5.  Thus, there is no additional electrodynamic information to be gleaned from (6.18). 

 We have now placed each of Maxwell’s equations on a solely geometric footing.  

Maxwell’s source equation in covariant (lower index) form is specified by (6.9), namely, 

σβ
σ

ββ κκ ;5 FjR −=−= , and there is an additional component in the 5-dimensional space given 

by the latter of (6.11), namely, στ
στ

σ
σ κκκ FFFjR

2
;5555 −=−=−= , which contains the very 

central term στ
στ FFFreeQCD 4

1
)( −=� , and which will be of great interest in the discussion to 

follow.  Maxwell’s magnetic equation is simply an axial component (6.16) of the first Bianchi 

identity.  And, the Lorentz force equation (2.6), upon which the foregoing geometrization of 
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Maxwell’s equations is based, is no more and no less than equation (2.4) for geodesic motion in 

the five-dimensional geometry.  With source equations producing fields and with material bodies 

in those fields moving over geodesics that are identical to and synonymous with the Lorentz 

force, Maxwell’s electrodynamics now rests on the firm geometrodynamic footing of a five-

dimensional Kaluza-Klein geometry. 

 

7.  Calculation of the 5-Dimensional Curvature Scalar, and the Fifth-Dimensional 

Components of the Einstein Equation. 

 Especially in light of the gravitationally-induced στ
στκ FFR

2

16
1

55 −= , see (6.11), we now 

turn our attention to the QED Lagrangian density ( )µ
µστ

στ jAFFc QED −−=�
2

� , and in particular, 

to seeing if we can place this entire QED�  with sources, on a purely geometric footing, in vacuo.  

In other words, we are now starting to take aim, as discussed in the introduction, at using an 

Einstein-Hilbert Action of the general form �= kRdVS  to specify QED�  with sources, but 

without explicitly adding an Matter� .  We begin discussion here by deriving the five-dimensional 

Ricci curvature scalar 5
5

)5( RRRR +=≡ Σ
Σ , taking the four dimensional curvature scalar to be 

σ
σRR = , since these are the clear candidates for inclusion in such an action.  In addition, we 

need )5(R  if we wish to consider the five-dimensional extensions of Einstein’s equation, i.e., 

)5(2
1 RRT Ν

Μ
Ν

Μ
Ν

Μ −=− δκ . 

 There are two ways to calculate 5
5R  which lead to alternative, but equivalent expressions.  

First, in (6.5), we have already found 5ΒR .  So, all we need do is raise the index using  

55 Β
ΜΒΜ = RgR , i.e.,  

( ) Μ
Σ

ΣΜ
Τ

Σ
ΒΣ

ΤΜΒΤΜ
ΤΣ

Σ
ΣΒ

ΣΜΒΜ −≡−=Γ−Γ+−= JgFFgFFgR κκκ ;,5 , (7.1) 

and then take the 5=Μ  component.  Second, alternatively, we can write the covariant Ricci 

tensor as ΝΜΝΜΝ
Σ

ΜΣΜΝ +== 5
5RgRgRgR σ

σ , then take the 5
5

555555 RgRgR += σ
σ  component, 

which we rewrite as: 

55555
5

55
σ

σ RgRRg −= . (7.2) 
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In this latter approach, we can take advantage of the fact that constant155 =±=g  depending on 

whether the fifth dimension is timelike (+1) or spacelike (-1), see the discussion following (5.7), 

and can make use of στ
στκ FFR

2

55 −= , as already found in (6.10).  In either approach, since the 

unknowns in (7.2) are 5
σR  and σ5g , the first step is to deduce 5

ΜR  in (7.1). 

 Starting from (7.1), we separate all contracted indexes into their spacetime and axial  

components.  We can reduce many terms throughout making use of 05 =ΣF  and its raised and 

lowered variants, as well as 05
5 =Γ τ , see (5.14).  Along the way, we also use (5.1) to substitute 

Σ
Τ

Σ
Τ =Γ Fκ5 .  This introduces another “gravitationally-induced” term Τ

Σ
Σ

ΤΜ− FFg 5κ  as in the 

second equation (6.11), which had no counterpart in the covariant-indexed 5ΒR  of (6.5).  

Because Τ
Σ

Σ
Τ FF  is summed over all five dimensions, we can readjust the indexes according to 

ΣΤ
ΣΤ

ΣΤ
ΤΣ

Τ
Σ

Σ
Τ −== FFFFFF .  Finally, recalling the “gravitationally-induced” term 

0
2

;5 ≠−=− στ
στ

σ
σ κκ FFF  from (6.11), we use 05 =ΣF  to eliminate only ordinary derivatives 

such as 0,5 =Τ
ΣF , but not the covariant derivatives Τ

Σ
;5F .  The net result of all of this, is that 

(7.1) reduces to: 

( )
( ) ( )ΜΜΜΜΜ

Σ
ΣΜ

ΜΜΜΜΜ

+−≡−≡+−=−=

+Γ−Γ+−=

)5(5;
5

;;

5
,5

jjJFFF

FFgFgFFgR

κκκκ

κκ

σ
σ

στ
στ

τ
σ

βσ
τβτ

τσ
σ

σβ
σβ

. (7.3) 

 In the above, we define an “ordinary” 5-dimensional current  

τ
σ

βσ
τβτ

τσ
σ

σβ
σβ

σ
σ FgFFgFj Γ−Γ+=≡ ΜΜΜΜΜ

,; , (7.4) 

as well as a “gravitationally-induced” five-dimensional current: 

05
5;

5
)5( ≠=≡ ΜΜΜ

στ
στκ FFgFj . (7.5) 

Returning with hindsight to (6.13) for which we define 05;
5

)5( =≡ ΒΒ Fj , we see now that Μ
)5(j  is 

zero in its covariant (lower index) form, but is “induced” to be non-zero when raised into 

contravariant form.  We noted earlier that ψγψ ββ =j  is a vector current and ψγψ 55 ∝j  a 

pseudoscalar.  We raise the question, without exploration at this time, whether 

05)5( =∝ ψγγψ ββj  and 0555)5( =∝∝ ψψψγγψj  are also axial vector and pure mass-term ψψ  
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currents which are zero in covariant form, but are induced to become non-zero when they are 

raised into contravariant form, and whether this might yield a path to solving the chirality 

problem of five-dimensional Kaluza-Klein theories. 

 Returning to our present task, which is to calculate )5(R  in two alternative ways, let’s now 

separate (7.3) into two separate equations: 

( )
( ) ( )µµµµ

σ
σµµ

στ
στµ

τ
σ

βσ
τµβτµ

τσ
σ

σβ
σµβµ

κκκκ
κκ

)5(5;
5

;;

5
,5

jjJFFF

FFgFgFFgR

+−≡−≡+−=−=

+Γ−Γ+−=

Σ
Σ

, and (7.6) 

( )
( ) ( )5

)5(
55

5;
55

;
5

;
5

555
,

5
5

5

jjJFFF

FFgFgFgR

+−≡−≡+−=−=

+Γ−−=

Σ
Σ κκκκ

κκ

σ
σ

στ
στ

τ
σ

βσ
τβ

σβ
σβ

, (7.7) 

where we use 05 =τF  to eliminate one term from (7.7).  The foregoing contain four distinct 

current types, referenced above in relation to the chirality discussion, explicitly written as: 

τ
σ

βσ
τµβτµ

τσ
σ

σβ
σµβ

σ
σµµ FgFFgFj Γ−Γ+== ,; . (7.8) 

στ
στµµµ κ FFgFj 5

5;
5

)5( == . (7.9) 

τ
σ

βσ
τβ

σβ
σβ

σ
σ FgFgFj Γ−== 5

,
5

;
55 . (7.10) 

στ
στκ FFgFj 55

5;
555

)5( == . (7.11) 

 So, now we can write out the five-dimensional curvature scalar 5
5

)5( RRR += , leaving R  

as a remaining unknown still to be deduced.  The first way to do this, directly from a rearranged 

(7.7), is to write: 

5552
5

5
)5( jFFgRRRR κκ στ

στ −−=+= . (7.12) 

The second way to do this, based on (7.2) and using στ
στκ FFR

2

55 −=  from (6.10), and (7.6) 

rearranged into ( )στ
στµµµ κκ FFgjR 5

5 +−= , and 5
5

)5( RRR +=  multiplied through by 55g  into 

5
5

5555)5(55 RgRgRg += , is: 

( )στ
στµµ

µστ
στµ

µ κκκ FFgjgFFRgRgRRgRgRgRg 5
5

2

555555555
5

5555)5(55 ++−=−+=+= . (7.13) 
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This last expression can, however, be reduced using 05
5 =µ

µ gg , see (5.8), down to: 

µ
µστ

στ κκ jgFFRgRg 5

2

55)5(55 +−= . (7.14) 

Keep in mind that 155 ±=g , depending on whether the fifth dimension is timelike or spacelike. 

 Equations (7.12) and (7.14) are totally-equivalent expressions, and they are each of 

interest in different circumstances.  Equation (7.14) is of interest, because it appears to resemble 

the QED Lagrangian ( )µ
µστ

στ jAFFc QED −−= 4
12

�� , and may provide a direct basis for 

geometrically representing QED� , if we can make a suitable association between µ5g  and µA , 

each of which is a dynamical field, to use in the term µ
µ jg5 .  So, in the next section, we will 

explicitly explore the connection between the gravitational potentials µ5g  and the 

electrodynamic potentials µA .  However, first, it behooves us to calculates the axial components 

of Einstein’s equation generalized to five dimensions: )5(2
1 RRT Ν

Μ
Ν

Μ
Ν

Μ −=− δκ , and here, 

(7.12) is the preferred expression. 

 To calculate the axial components of )5(2
1 RRT Ν

Μ
Ν

Μ
Ν

Μ −=− δκ , we use (7.3) and (7.12) 

to write: 

( ) ( )5552
52

1
)5()5(52

1
55 jFFgRjjRRT κκδκδκ στ

στ −−−+−=−=− ΜΜΜΜΜΜ . (7.15) 

 This splits into two equations:  στ
στµµµ κ FFgFj 5

5;
5

)5( ==   (7.9) 

( ) ( )στ
στµµµµµµ κκκκ FFgjjjRT 5

)5(55 +−=+−==− ; and (7.16) 

( ) ( ) RFFgjRjjRRT 2
1555

2
1

2
15

)5(
5

2
1

)5(2
1

5
5

5
5 −+−=−+−=−=− στ

στκκκκ , (7.17) 

where we have employed (7.9) to consolidate the former and (7.11) for the latter.  The four-

dimensional Ricci scalar R  is still an unknown in (7.17) and elsewhere; in the next section, we 

will see how to further deduce this this. 

 

8.  The Vector Potential, the Gravitational Potential, and the Exact QED Lagrangian 

 Once again, we start with (5.1), written out as (recall 05, =ΣΤg , see (5.6)): 
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( ) ( )ΑΤΤΑ
ΜΑ

ΑΤΤΑΑΤ
ΜΑ

Τ
Μ

Τ
Μ −=−+=Γ= ,5,52

1
,5,55,2

1
5 gggggggFκ . (8.1) 

It is helpful to lower the indexes in field strength tensor and connect this to the covariant vector 

potentials µA , generalized into 5-dimensions as ΜA  via ΣΤΤΣΣΤΤΣΣΤ −=−≡ ,,;; AAAAF , as such: 

( ) ( ) ( )ΣΤΤΣΑΤΤΑ
ΜΑ

ΣΜΤ
Μ

ΣΜΣΤΣΤΤΣ −=−===− ,5,52
1

,5,52
1

;; ggggggFgFAA κκκ . (8.2) 

The relationship ( ) ( )ΣΤΤΣΣΤΤΣΣΤ −=−= ,5,52
1

;; ggAAF κκ  expresses clearly, the antisymmetry of 

ΣΤF  in terms of the remaining connection terms involving the gravitational potential.  Of 

particular interest, is that we may extract from (8.2), the relation:  

ΤΣΤΣΤΣ == ,52
1

,52
1

; hgA κκ , (8.3) 

using also ΜΝΜΝΜΝ += hg κη  for the gravitational potential energy ΜΝh .  If one forms 

ΣΤΤΣ − ;; AA  from (8.3) and then renames indexes and uses ΝΜΜΝ = gg , one arrives back at (8.2).  

The reason we did not remove the covariant derivative via ΣΤΤΣΣΤΤΣΣΤ −=−≡ ,,;; AAAAF , is that 

in (8.3), ΤΣ;A  is considered distinctly from ΣΤ− ;A , and so the covariant derivatives do not 

become ordinary unless and until one forms ΣΤΤΣΣΤΤΣΣΤ −=−≡ ,,;; AAAAF . 

 Equation (8.3) is a first order differential equation which tells us that the covariant 

derivative of the electrodynamic potential ΣA  is identical with the ordinary derivative of the 

gravitational potential Σ5h .  In the weak field limit, where covariant derivatives become 

approximately equal to ordinary derivatives, ΤΣΤΣΤΣΤΣ ≈== ,,52
1

,52
1

; AhgA κκκ , and so, integrating 

based on this approximation, we obtain: 

ΣΣΣ ≈= Ahg κκ 255 . (8.4) 

 Now, we return to examine (7.14) in this weak field limit, ΤΣΤΣ ≈ ,; AA .  Most importantly, 

referring to (8.4), the final term in (7.14) becomes µ
µ

µ
µ κκ jAjg

2

5 2≈ .  Thus, substituting from 

(8.4) into (7.14) yields: 

and using c�/2
2

κκ =  yields: 



21 

( )µ
µστ

στκ jAFFRgRg 2
2

55)5(55 +−+≈ . (8.5) 

Now, let’s continue with this weak-field limit, to make several further connections of interest, 

and especially, to deduce the four-dimensional Ricci scalar σ
σRR =  which was still unknown in 

(7.17).  Because (8.5) contains )5(55Rg , the exact expression for )5(R  depends upon whether 

155 +=g  (timelike) or 155 −=g , spacelike. 

 For a timelike fifth dimension: 

( )µ
µστ

στκ jAFFRR 2
2

)5( +−+≈ . (8.6) 

For spacelike, (8.6) becomes: 

( )µ
µστ

στκ jAFFRR 2
2

)5( +−+−≈− . (8.7) 

 Now, up until this point, all of the development has been based on a single supposition 

introduced just after (2.6): the requirement that the Lorentz force must be represented as nothing 

other than geodesic motion in a five-dimensional geometry, as expressed in (2.7) and (2.8).  

Other than perhaps our imposing the requirement that ΝΜΜΝ −≡ FF , every step taken since then 

has been fully deductive, with no other assumptions.  We have even left open the question of 

whether the fifth dimension is timelike or spacelike, simply exploring the consequences in the 

alternative, as pertinent.  This has enabled us to fully specify the axial components of the energy 

tensor, see (7.15) through (7.17), and to obtain the five dimensional Ricci scalar )5(R , up to the 

four-dimensional scalar σ
σRR =  which remains undetermined in (7.17) and (8.5) through (8.7).  

To deduce σ
σRR = , we now must make a new supposition, which we do as follows: 

 Many authors write the QED Lagrangian density as ( )µ
µστ

στ jAFFc QED −−= 4
12

��  (with 

1== c� ).  However, by rescaling the sign of the source current density, it is equally proper to 

use the convention ( )µ
µστ

στ jAFFc QED +−= 4
12

�� , see, e.g., [12], page 30.  By virtue of the 

opposite signs as between στ
στ FF  and µ

µ jA2  in (8.6), and given that there is no choice of the 

constant factors back in (3.2) and (3.3) which would have reversed this, we shall use this latter 
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convention to write QED� .  Nor would any choice, by the way, have altered the ratio of 2:1−  

between the constant factors multiplying  στ
στ FF  and µ

µ jA , into the 4:1−  ratio in QED� . 

 Now, using this ( )µ
µστ

στ jAFFc QED +−= 4
12

�� , the action is formed according to 

� −= xdgAS QED
4)( �µ .  If, however, we can turn (8.6) and (8.7) into expressions in which the 

ratio of the constant factors multiplying στ
στ FF  and µ

µ jA  is 4:1−  rather than 2:1− , then we 

could use these expressions to write QED in terms of a gravitational action, in vacuo, of the form 

�= kRdVS .  Because σ
σRR =  is still an unknown, we shall now use these observations to 

deduce σ
σRR =  as such: 

 We shall select σ
σRR =  in (8.6) and (8.7) such that the ratio of the constant factors 

multiplying στ
στ FF  and µ

µ jA  changes from 2:1− , to 4:1− , and also, such that R  only 

contains στ
στ FF , and not µ

µ jA .  Again, these are affirmative requirements, not deductions.  We 

may impose these requirements by rewriting (8.6) and (8.7) as: 

( ) ( )µ
µστ

στµ
µστ

στ κκ jAFFjAFFRR 22 2
1

22

)5( +−=+−+≈ . (8.8) 

( ) ( )µ
µστ

στµ
µστ

στ κκ jAFFjAFFRR 22 2
1

22

)5( +−+=+−+−≈− . (8.9) 

 It is then easy to deduce from these, respectively, also using 5

2

2
1 8

c
G

c ��

πκκ == , that: 

στ
στ

στ
στ κκ FF

c
FFRg

�
==

2

2
1

55 , and (8.10) 

where 155 ±=g  for a timelike (+) and spacelike (-) fifth dimension, respectively.  The choice of 

timelike versus spacelike, merely flips the sign of the (four-dimensional) Ricci scalar. 

 With σ
σRR =  now established, we can go back and write the five-dimensional Ricci 

scalars (8.8) and (8.9), respectively, as:  
2

2 κκ =
c�

 

( ) ( ) QEDcjAFF
c

jAFFRg �κκκ µ
µστ

στµ
µστ

στ 442 4
1

2
1

2

)5(55 =+−=+−≈
�

. (8.11) 
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Apparently, the respective timelike versus spacelike choice also flips the sign for )5(R . 

 Therefore, it become possible to rewrite the QED action � −= xdgAS QED
4)( �µ  as: 

�� −≈−= xdgR
c

gxdgAS QED
4

)5(55
4

4
1

)(
κµ � , (8.12) 

This is the Lagrangian (action) for the vacuum, because it does not contain any explicit matter 

terms, but only contains )5(R .  We can put this into words by saying that the QED action is equal 

to the five-dimensional Ricci scalar, integrated over the four-volume of spacetime.   A Ricci 

scalar derived from all five dimensions, integrated over ordinary spacetime, results in Quantum 

Electrodynamics.  QED is the four-dimensional manifestation of a five-dimensional universe!  

This achieves the goal set out in the introduction, of generating QED out of an in vacuo action of 

the general form �= RdVS k
1 , and (8.12) is the explicit form of this action. 

 Keep in mind, however, that is a weak-field limit, because it is based on the 

approximation ΤΣΤΣ ≈ ,; AA , hence ΣΣΣ ≈= Ahg κκ 255 , see (8.4).  Thinking carefully about this 

approximation, we realize that the term Σ5g , and not ΣA , is to be is associated with the exact 

QED� .  The usual QED�  is itself the weak field limit, that is,  ( )µ
µστ

στ jAFFc QED +−≈ 4
12

�� .  If 

we carefully backtrack, we can now deduce find the exact QED� , for all field strengths, as 

follows: 

 First, since 155
55 ±== gg ,  for a timelike (+) and spacelike (-) fifth dimension, 

respectively, we can rewrite (8.10) as στ
στκ FFgR 55

2

2
1= .  Now, we employ this expression in 

(7.12), and (8.10) in (7.14).  Then we multiply (7.12) by 55g  to obtain, after reduction, including 

15555 =gg , the following alternative expressions: 

5
55

2

2
1

)5(55 jgFFRg κκ στ
στ −−= , and (8.13) 

µ
µστ

στ κκ jgFFRg 5

2

2
1

)5(55 +−= . (8.14) 
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Because these are equivalent expressions for )5(55Rg , we can equate these to deduce that 

5
555 jgjg −=µ

µ , or, in five-covariant form: 

05 =Σ
Σ jg . (8.15) 

This the direct relation which tied together the two method we used to obtain )5(R . 

 Next, we return to (8.11).  The terms with µ
µ jA  were based on the ΤΣΤΣ ≈ ,; AA  

approximation.  The exact relation in (8.11), is that given geometrically by )5(554 Rgc QED =�κ .  

Converting back via 42

2
1 8 cGc πκκ == � , and using (8.13) and (8.14) with some term 

manipulation, we can now write the exact QED Lagrangian for all fields weak and strong, as: 

)5(552
15

552
1

4
1

52
1

4
12 RgjgFFjgFFc QED κστ

στµ
µστ

στ κκκ =−−=+−=��  (8.16) 

Now, we return to (8.3) which is an exact expression.  In the weak field limit, where ΤΣΤΣ ≈ ,; AA , 

we may make the approximate substitution ΣΣΣ ≈= Ahg κκ 255  of (8.4) into the above, thus: 

µ
µστ

στµ
µστ

στ κκκκ jAFFjgFFc QED +−≈+−= 4
1

52
1

4
12

��  (8.17) 

which recovers the customary QED Lagrangian.  The action (8.12) contains an approximation 

symbol, because the QED�  was taken to be the weak field µ
µστ

στ κκ jAFF +− 4
1 .  If we now use 

(8.17), then the action (8.12) now becomes the exact expression, with 1== c� : 

��

��

−�
�

�
	



� +−≈−�
�

�
	



� +−=

−=−=

xdgjAFFxdgjgFF

xdgxdgRggS QED

44
5

44
)5(555

4
1

2
1

4
1

4
1

)(

µ
µστ

στµ
µστ

στ

µ

κ

κ
�

. (8.18) 

where in the final set of terms, we have employed the weak field ΣΣΣ ≈= Ahg κκ 255 .  The 

155 ±=g  simply represents the sign to be used depending on whether the fifth dimension is 

timelike or spacelike.  Once a choice is, made, this is either a plus or a minus sign. 

 

9.  Electrodynamic Energy Tensors, including the Maxwell Stress Energy 

 To be added. 
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