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Abstract:

We examine a general Kaluza-Klein theory of classical electrodynamics and
gravitation in a five-dimensional Riemannian geometry. Based solely on the condition that
the electrodynamic Lorentz force law must describe geodesic motion in this five-
dimensional geometry, it appears possible to place all of Maxwell’s electrodynamics, the
theory of electrodynamic potentials, and the QED action on a solid geometrodynamic
footing, for weak and strong electro-gravitational fields. We make no choice as between
the fifth dimension being timelike or spacelike, but simply point out the impact in those
places where this choice makes a difference. We also show, if the fifth dimension is chosen
to be a compact, cylindrical spacelike dimension, that motion in this fifth dimension may be
synonymous with intrinsic spin, and that the radius of the compact dimension, for a
electromagnetic coupling on the order of unity, is equal to the Schwarzschild radius of the

geometrodynamic vacuum first explored by Wheeler.
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1. Introduction

The possibility of employing a fifth spacetime dimension to unite classical gravitation
and electrodynamics has intrigued physicists for almost a century. [1], [2] Early theorists
became perhaps overly-occupied with making assumptions about the scale or topology of the
extra coordinate dimension. [3] Following the path of Wesson and other current-day theorists
[4], we seek here to expose the main features of Kaluza- Klein theory irrespective of any
particular model, and most importantly, to make the connection between Einstein’s gravitation
and Maxwell’s electrodynamics which is offered by Kaluza-Klein theories as clear and solid as
possible, and as independent as possible of the detailed choice of model.

Most fundamentally, we adopt the view of the above-noted theorists that matter and
electrodynamic charge are “induced” in observed four dimensions of spacetime, from a vacuum
in five dimensions, and so, in keeping with the spirit of Wheeler’s program, [5] are of completely

geometrodynamic origin. Particularly, we seek to show how classical electrodynamics emerges

entirely from an Einstein-Hilbert Action of the general form § = I RdAV where R is a suitably-

defined Ricci curvature scalar, integrated over a suitable multidimensional spacetime volume,

and k is a constant. The reader will observe that this omits any Lagrangian density £, of

atter

matter, 1.e., that it is not of the form § = .[ (kR + L,,,,..)dV and so is in the nature of a vacuum

action equation. In different terms, we seek to induce the entirely of Maxwell's electrodynamics
with sources, particularly its Lagrangian density £, = (F TF, A" ), hi=c=1outofa

gravitationally-based vacuum.

The main line of development will be based on a single proposition: we shall require
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that the Lorentz force of electrodynamics, m——- = qF "+

ar

, must be represented as fully

geodesic motion in the five-dimensional geometry.

In five dimensions, we shall employ g, = gxy With M,N =0,1,2,3,5 for the metric

tensor, so g, with &,v =0,1,2,3 is the ordinary metric tensor in the spacetime subspace.



Inverses are defined in the usual manner according to g g, ="~ and so g and g, raise

and lower indexes in the customary manner.
While most authors treat the fifth dimension as spacelike and a few have considered this
to be timelike, e.g., [6], [7], [8], we shall approach the fifth dimension as independently of this

choice as possible. Where this choice does make a difference, we shall point this out. If we
define g\ =Myn + ;hMN in the usual manner with & = \/W , then for the weak-field
limit g, — 7y - If the fifth dimension is timelike, diag(7,, )= (+ 1,-1,—1,—1,+1); if it is
spacelike, then diag(f]MN) = (+ 1,—1,—1,—1,—1). In either case, 77,y =0 for M # N. Note that the

constant x in Einstein’s equation —xT*, = R*, —16*/R is related to the foregoing &, with

—2 . .. .
fundamental constants restored, by k' =17ick = 87zG/ ¢*, with the overbar used to distinguish

these two constants &, k.

2. Geodesic Motion in Five Dimensions, and the Lorentz Force

We start by maintaining the usual interval in the 4-dimensional spacetime subspace,

using dz’ =g wdx*dx” , and define the five-space interval as:

dT? = g\dx™dx™ = g, dx"dx” + g5, dx’dx" + g ,sdx"dx’ + g sdx>dx’ o0
=dt’ +2g,,d’dx’ + g dx’dx’ . .

The above is independent of whether the weak field g., — 7., =*1, i.e., of whether the fifth

dimension is timelike or spacelike, and is generally model-independent.
Like any metric equation, (2.1) can be algebraically-manipulated into:
dx™ dx™
l=guw—= )
dT dT

(2.2)

which is the first integral of the equation of motion. In five dimensions, we specify the

Christoffel connections in the usual manner, that is, [™sr =1 g™ (g arT T 81asx — &r1a ), hence
Mer =Y. We employ gunz =0 as usual, with the usual first rank covariant derivative

AMs =AMz +TMAzA® . We then take the covariant derivative of each side of (2.2) above, and



after the usual reductions employed in four dimensions, and multiplying the result through by
dT? /dt*, we arrive at the five-dimensional geodesic equation:

2.M z T
dx iy, 2.3)
dt dt dt

The above is five independent equations. We are interested for now in the four equations

for which M = &, which specify motion in ordinary spacetime:

2. u by T
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dt drt dr

This expands, using the metric tensor symmetry g, = &xm» O:
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drt drt drt drt drt drt dr

Now, let us contrast (2.5) above to the gravitational geodesic equation which includes the
Lorentz force law, namely, equation (20.41) of [9]:
d*x* dx® dx* q _, dx°

— " =0. (2.6)
dt dt dt m dr

We now take a critical step: We require that the Lorentz force as expressed above, must
be represented as nothing other than geodesic motion in the five-dimensional geometry. The
first two terms in (2.5) and (2.6) are identical, and they specify geodesic motion in an ordinary
gravitational field absent any electrodynamic fields or sources. The absence of any mass or

charge in the first two terms captures the Galilean principle of equivalence and expresses

Newtonian inertial motion in a gravitational field via the Christoffel connections I .
If we require the Lorentz force to also be fashioned as geodesic motion through
geometry, then we can do so by defining the third terms in (2.5) and (2.6) to be equivalent to one

another, and the fourth term in (2.5) to be zero. Therefore, we now define:

dx’ dx° __ 49 pu dx°

2FﬂSO'_
dt drt m dt

, and 2.7

I's5=0. (2.8)



5 5
One might wish to consider I'“ss #0, in which case I'*ss C;ifli in (2.5) would become an
(A

additional term in the Lorentz force law, but in the absence of experimental evidence for any
deviations from the Lorentz force law, we shall proceed on the basis of (2.8).
The relationships (2.7) and (2.8), ensure that Lorentz force motion is in fact, no more and

no less than geodesic motion in five dimensions. All else will be deduced from (2.7) and (2.8).

3. Placing the Lorentz Force on a Geometrodynamic Footing as Geodesic Motion
Now, let us focus on equation (2.7). We can divide out dx"/ dt from (2.7), and then

write the remaining terms as.

5
o, P o [, 4 @3.1)
dt hc m

where we have explicitly restored 7 =c=1. Now, we separate the proportionalities
dx’ / dt o< g/m and 2I'*s; < —F*5, and turn the proportionalities o into equalities by restoring
their dimensional and numeric constants, starting with the former proportionality.

Irrespective of whether the fifth dimension is timelike or spacelike, we take dx® to be
given in dimensions of time, so that dx’ / dt 1s a dimensionless ratio. In the event that the fifth
dimension is spacelike, one need merely divide through by c¢. In rationalized Heaviside-Lorentz
units, the electric charge strength g (for a unit charge such as the electron, muon and tauon) is
related to the dimensionless (running) coupling & = ¢° / 4mhc which approaches o — 1/137.036

at low energy. The value of @ is the same in all systems of units but the numerical value of ¢q is

different, so it is imperative that the exact expression for dx’ / dt o< g/m be based on & rather

than ¢, and be independent of where the 47z factor appears. Further, to match dimensions with

Jhe the mass m needs to be multiplied by a factor of JG. Taking all of this into account, we

now define:

5
d _ INhea 1 1 g__ 1 1q 3.2)

dr 4 JGm  4JanG m he’ 2k m




The equivalence between the first two terms is independent of the system of units but the final
term is in Heaviside-Lorentz units. There is freedom in the overall multiplicative numeric
constant, which we choose to be —% . This choice is made because in the downstream
development several sections hence, it leads to the correct constant factors in the QED
Lagrangian and in the Maxwell stress energy tensor.

Then, we substitute (3.2) into (3.1) to obtain:

Iso = 12”? Fs = KF"s. (3.3)
Ve

As between (3.2) and (3.3), the placing of —< in (3.3) causes F*“s to be related to I'“s; by the

simple constant of proportionality x from gvn =un t ;hMN . The definitions (3.2) and (3.3),

together with I'*ss =0 from (2.8), when substituted into (2.5), turn the five-dimensional
geodesic equation (2.5) into the Lorentz force law, and places this electrodynamic motion onto a

totally-geometrodynamic footing. Of course, (3.3) is of further value, because it also relates the
mixed field strength tensor F*5 to the axial connection components I'*ss, and this will lead to
numerous other results. Although the I'™xr not themselves tensors in general, (3.3) does suggest
that that particular components I'“ss do transform in the same way as the mixed tensor F*5,

multiplied by a the constant factor K.

4. Timelike versus Spacelike for the Fifth Dimension, and a Possible Connection to
Intrinsic Spin

The results above are independent of whether the extra dimension is timelike or
spacelike. Transforming into an “at rest” frame, dx' =dx* =dx’ =0, the spacetime metric
equation d7’° = g, dx"dx” reduces to d7==,/g,dx", and (3.2) becomes:

5
di:il &i 4.1)
dx’ 4N 4nG m

For a timelike fifth dimension, x’ may be drawn as an “axial time” axis orthogonal to x°,

and the physics ratio g/m (which, by the way, results in the g/m material body in an



electromagnetic field actually “feeling” a Newtonian force in the sense of F =ma ) measures the

“angle” at which the material body moves through the x°,x°

time plane.”

For a spacelike fifth dimension, where a compactified, hyper-cylindrical x’ = R¢ (see
[10], Figure 1) and R is a constant radius (distinguish from the Ricci scalar by context),
dx’ = Rd¢. Substituting this into (3.2), leaving in the £ ratio obtained in (4.1), and inserting c

into the first term to maintain a dimensionless equation, then yields:

Rd¢ =il \/hca =il 1 i (4'2)
cdt 4 JGm 4 \J4mnG m

We see that here, the physics ratio ¢g/m measures an “angular frequency” of fifth-dimensional

rotation. Interestingly, this frequency runs inversely to the mass, and by classical principles, this
means that the angular momentum is independent of the mass, i.e., constant. If one doubles the
mass, one halves the tangential velocity, while the radius stays constant. Together with the +
factor, one might suspect that this constant angular momentum is related to intrinsic spin. In
fact, following this hunch, one can arrive at an exact expression for the compactification radius
R, in the following manner:

Assume that x’ is spacelike, casting one’s lot with the preponderance of those who study
Kaluza-Klein theory. In (4.2), move the ¢ away from the first term and move the m over to the
first term. Then, multiply all terms by another R. Everything is now dimensioned as an angular
momentum, which we have just ascertained is constant irrespective of mass. So, set this all to

* 4 nh, which for n =1, represents intrinsic spin. The result is as follows:

3
de¢R=il hcaR 1 ¢

dr 4 JG | 4amg !

R:i%nh. (4.3)

Now, take the second and fourth terms, and solve for R with n=1, to yield:

2 |Gh 2
R=— |20 2, 4.4
NEA I “h

where L, = \/Gh/ ¢’ is the Planck length. This gives a definitive size for the compactification

radius, and it is very close to the Planck length. What is of interest, is that & is a running

coupling. At low probe energies, where & —1/137.036, R=23.412- L, . However, this is just



the apparent radius relative to the low probe energy. If one were to probe to a regime where «
becomes large, say, of order unity, @ =1 then R=2L, is actually identical with the
Schwarzschild black hole radius R; =2L, of the geometrodynamic vacuum “foam.” [9] at
§43.4, [11]" Since we have based the foregoing on a unit charge with spin Y2, and since this is
independent of the mass, the foregoing would appear to characterize the compactification radius
R for all of the charged leptons, and to provide a geometric foundation for intrinsic spin!
Further, it suggests that for @ =1, the Schwarzschild radius of the vacuum is synonymous with

the compactication radius of the fifth dimension, R = R¢ =2L,. This, by the way, is another

consequence of placing the —+ factor in (3.2).

5. Symmetric Gravitation and Antisymmetric Electrodynamics

Now, let us turn back to the association I'“ss = KF*5 in (3.3), which arises from the
requirement that the Lorentz force be represented as geodesic motion in five dimensions. We
know that F*" = —F" is an antisymmetric tensor. By virtue of (3.3), this will place certain
constraints on the five-dimensional Christoffel connections T™yr =+ g™ (g, + g1\ 5 — 8514 )
and it is important to find out what these are. These constraints, in the next section, will provide

the basis for placing Maxwell’s equations onto a purely geometrodynamic footing.

First, because we are working in five dimensions, we will find it desirable to generalize
F* to F™. We make no a priori supposition about the additional components in F™ | other

than to require that they be antisymmetric, F™ =—~F™ . Any other information about these
new components is to be deduced, not imposed. Second, we generalize (3.3) into the full five

dimensions, thus:

Moy = kF Vs, (5.1)

By virtue of (2.8), I'“ss =0, we may immediately deduce that:

" By way of review, the Planck mass, defined from the term atop Newton’s law as a mass for which GM PZ =fc,

is thus M, =/ hc/ G . In the geometrodynamic vacuum, the negative gravitational energy between Planck
masses separated by the Planck length L, = 4/ Gh/ c’ precisely counterbalances and cancels the positive energy of

the Planck masses themselves. The Schwarzschild radius of a Plank mass R =2GM ,, /c*=2 Gl’l/c3 =2L,.



s = kF*s =0. (5.2)

As it stands, F™s is a mixed tensor, and it would be better to raise this into contravariant

form where we can clearly examine the consequences of having an antisymmetric field strength
F™ =—F™  Thus, let us now raise the lower index in (5.1), and at the same time equate this

to the Christoffel connections, as such:

MA YN

kF™ :KgZNFMZ :gZNFM52 :%g 8 (gA5,2+gZA,5_gSZ,A)' (5.3)

Now, we use (5.3) to write F™ =—F" completely in terms of the metric tensor g,,, and its

first derivatives, as:

NA M

CFMN gMAgZN(gAS’E + 8y s _gSE,A): —g' g (8A5,z + 8ras —gSE’A). (5.4)

Renaming indexes, and using the symmetry of the metric tensor, this is readily reduced to::

(gvlvmgn\](gfm5 =0. (5.5)

This is an alternative, geometric way of saying that F™ =—-F™

We can further simplify this using the inverse relationship g™ g, =", which we can
differentiate to obtain (g™ gy )’A =g Agy+8 8a=0,1€, g g\ =—8 A&y . This

can then be used with A =5 to reduce (5.4) to the very simple expressions, for both the

covariant and contravariant metric tensor:

gMN,S =0; 8MN,5 =0. (5.6)

All components of the metric tensor are constant over the variations taking place only through

the fifth dimension.

Now, we return to write out I'*ss =1 g** (gAi5 + 8sas— gSS,A)z 0 from (2.8), see also
(5.2). Combined with gy =0 aboveand g™ g, , =—g " .agqy we further deduce that:

g55~A =0; 8s5.A =0 (5.7)

This means, quite importantly, that g.; = constant and g55 = constant , everywhere in the five-

dimensional geometry.



To fix these constant values, consider the weak-field limit g,y — 77, - If the fifth
dimension is timelike, diag(7,, )= (+ 1,-1,~1,-1,+1) and g,; =g =+1. If it is spacelike

(leading to the intrinsic spin results of section 4), then diag(nMN )=(+1-1,-1,-1,-1) and

gss =g> =—1. But, by (5.7), if the above expressions for g.; and g* are true anywhere, then

gs =8> =+1 or g, =g =—1 are true everywhere, respectively, for a timelike or spacelike

fifth dimension. In either case, timelike or spacelike, g55 gss =1. As aresult, the inverse relation

¢gs=8"8,s+8 8s=8"g,s+1=05°5=1, leads also to the null condition:

¢Fg. =0, (5.8)

which applies irrespective of the timelike versus spacelike choice.

Finally, using (5.1) together with (5.6) and (5.7), we may deduce:

;'FSS:FSSS:%gSA(gAs,s+g5A,5_g55,A):0- (5.9)

Taking this together with (5.2), Tss = kF*s =0, we have now deduced that all of the newly-

introduced axial components for the mixed field tensor are zero, i.e.,

KkFMs =TMss =0. (5.10)

The free index above can easily be lowered to also find that the covariant:

Fs=—F,, =0. (5.11)

But, since the non-diagonal components of F#, are non-zero, one should take care to ensure that

M5 _

the contravariant tensor components F —F™ =0 as well, that is, we want to make sure that

the fixed index 5 in (5.10) can properly be raised. One can employ (5.1) together with the
explicit components for I'sy to write:

FM™ = gENFMZ = gENFMSZ :%gENgMA (gAS,): t 8xas _gSE,A)' (5.12)

Expanding this to separate the & from the 5 components, and applying (5.6), (5.7) and (5.8) as

needed, together with F™ =—F™ to eliminate the only term which (5.6), (5.7) and (5.8)

cannot directly eliminate, one can indeed deduce that in addition to (5.10) and (5.11):

10



F™ =—-FM=0. (5.13)

Now, the free index can be easily lowered, referring also to (5.1), to find that:

KF°u =Tsmu =Tms =0. (5.14)

So, we find that all of the newly-introduced axial components of the field strength tensor,
whether in raised, lowered, or mixed form, are equal to zero. Equations (5.10), ™ss =0, and

(5.14), I’sm = Ius = 0, taken together, tell us that as well that any Christoffel connection with
two or more axial indexes, is also equal to zero.

Combining (5.1) with F™ =—F>" =0 as well as F,;; =—F,,, =0, we may deduce two

further relationships:

g M5y =—gP Ty =0 and g TMss =—g [ Vst =0, (5.15)
which are variations of the “two or more axial index” rule noted above.

It is also helpful as we shall soon see when we examine the Riemann tensor, to make note

of the fact that:

Mers =38™ (gAZ,T T 8tar = 8r1a )+%gMA (gAZ,T,S T 8rars ~8stas ) =0. (5.16)

This makes use of (5.6) and the fact that ordinary derivatives commute. A further variation of

(5.16) employs (5.1) to also write, for the field strength tensor:

Msss = ;'FMZ,S =0. (5.17)

Again, at bottom, every result in this section is a consequence of relationship (5.1), taken in

combination with the antisymmetric field strength F™ =—-F™ . Now, we turn to the Riemann

tensor, and Maxwell’s equations.

6. Maxwell’s Equations as Pure Geometry

We have shown how Lorentz force motion might be described as simple geodesic motion
in a five-dimensional Kaluza-Klein spacetime. But equations of motion are only one part of a
complete field theory. The other part is a specification of how the “sources” of that theory

influence the “fields” originating from those sources. In a complete theory, the equations of

11



motion then describe motion through the fields originating from the sources. It is now time to
place Maxwell’s equations on a firm geometric footing.
In five dimensions, we of course specify the Riemann tensor in the usual way, albeit with

an extra axial index. That is:

R*smn = —T"smn + T + TenI om — Toeml o 6.1)

Now, let’s consider the M =5 component of this equation, that is:

R*sn =T s +Tens + T ss — TopsT e (6.2)

By virtue of I'sr5s =0, equation (5.16), which is in turn a consequence of gwns =0,

which is in turn a consequence of FMY =—F™ | the second term zeros out, and (6.2) becomes:

R*psn =—T"psn + a5 — TpsTsx . (6.3)

Substituting (5.1), i.e., ™y = xF My into the above, and with some minor term rearrangement,

we immediately arrive at the very critical expression:

R%gsn = —;'(FAB,N +TA N Fo s —T e Fis )= —KF px. (6.4)

In particular, these three remaining terms of R*gsn turn out to be identical with the expression
for the gravitationally-covariant derivative F*sx of the mixed field strength tensor, times the

constant factor — & . This will lead us immediately to a geometric foundation for Maxwell’s
equations in the following way:
As regards Maxwell’s electric charge equation, we contract (6.4) down to its Ricci tensor

component and define a five-current J; with covariant 5-space index:

Ry =R%pss = —;'(FEB,E +T e F s — FTBEFET): —KkF 5y = —;'JB . (6.5)

We will now want to see how J relates to the observed four-current j; = F“p.0 of

electrodynamics. We first expand the ¥ and T indexes into spacetime and axial parts, and use

15 =0 and F’r =0 from (5.14) to zero out some terms (but not any of the covariant

derivatives, for reasons to soon become apparent), to obtain:

RBS = _;'(FO-B,O' + Fo-mFTB - FTBO'FO-T): _;(Fo-&o' + FSB§5 )E _KJB N (66)

12



Now, we split the above into two equations, namely:

Rys=—k(Fpo + To0F s —T7 poF %2 )= —k(F% o + Fps)=—KJ 5, and 6.7)

Ry =—K(F 50+ To0F s —T%50F%; )= —k(F 50 + F'ss )= —xJ. 6.8)

In (6.7), we discern the four-covariant derivative F°go =F%p6 +1°wF 3 —I"" g F -, which
means that F’gs =0 and that J 5 = Jp 1s the observed electromagnetic current source density.
We may therefore reduce (6.7) to:

Ry =—KkFpo=—Kj,. (6.9)

This is Maxwell’s electric charge equation, on a geometric foundation.

For the axial equation (6.8), we use F *s =0 to reduce terms as before, but we also

employ the substitution T'™sy = KFM;y from (5.1). Thus:

Ry =—K F'oF% =—K{(Fs0 + Fss)=—kJ, =—Kj, #0. (6.10)

Interestingly, despite the F s + F’s;s term containing two mixed tensors which both vanish in

their own right, this term for R, is not equal to zero. Rather, we find that the covariant
derivative term F s + F’s;s does not vanish, and in fact, leaves a very central term F “F,.
found in the QED free-field Lagrangian £, 1., =—1F“ F,, and in the Maxwell stress-energy
tensor 7%y mavwen = —(F “F,—10"F ‘”Fm) in Heaviside-Lorentz units. Contrasting (6.10) with
(6.9), it is apparent that F’s5 =0, but that Fs.c = F°F, #0. This is the first of several

instances where we will find that a covariant derivative of F's =0 or its covariant and
contravariant relatives, is non-zero. One may think of F°ss =F?F_ #0 as being
“gravitationally induced” out of F s =0, solely as a non-linear gravitational effect, because in
the absence of gravitation, covariant derivatives approach ordinary derivatives and so

F’sc — F°s0 =0. Consolidating (6.9) and (6.10) together for contrast, we see that the five-

vector for Ry, is given by:

13



R :_;FO- ~o':_;. :_;‘FO- ,0'+FO-‘m'FT _FT O'FG‘[

B5 7 B _],6 ( B B ~) B ), 6.11)
Ry =—KkF %50 =—K s =—k F”F,,

which we consolidate to:

Ry =—Kj, =—KF 5. (6.12)

The other consolidated relationship, emerging from F’ss =0 and F’s5s =0, is:

FSB;S :O (6.13)

We make a special point of this, because when we consider the Ricci tensor in mixed form, e.g.,
R"s, we will find that the terms analogous to (6.13) become non-zero as well (just like F%s, in
(6.11)), and contribute an “axial” component to the currents which may help to resolve the

chirality problems often found in Kaluza-Klein theory. It is already worth noting from (6.11),

that j; = J}/ﬁl/f is a vector current, so that j o< l/_/7/51// will most certainly be a pseudoscalar. We
use the proportionality for j,, because we have not chosen a representation of the 5-D Clifford
algebra 111, I }= gwun » and although the intrinsic spin results of section 4 herein seem to lean

spacelike, this exact choice of representation does depend upon whether the fifth dimension is
timelike or spacelike, see., e.g., [10], section 3.
Turning now to Maxwell’s magnetic equation, we first lower the A index in (6.4), and

use R,pvn = Rynap to write:
Ros = &ua R8sy = —;'(gMAFAB,N + gua L enF o5 — gMAFEBNFAz)Z —;'gMAFAB;N . (6.14)
Maxwell’s magnetic equation then arises straight from the 5-dimensional rendition of the “first”

Bianchi identity:
Rynap + Ryapn + Rysna =0 (6.15)

Making use of (6.14), the M =5 component of this is:

Rixap + Rsppn T Rspaa = _K(FAB;N + FBN;A + FNA;B ): _K(FAB,N + FBN,A + FNA,B): 0, (6.16)

where we account for the well-known fact that in the cyclic combination of (6.16) with

antisymmetric tensors, the Christoffel terms in the covariant derivatives cancel identically, so the

14



covariant derivatives becomes ordinary derivatives. In the NAB =7/ subset of this, we
immediately obtain Maxwell’s magnetic equation

Fog, +Fp o+ F,;=0. (6.17)

(774

In light of our earlier discovery of some new terms in Maxwell’s electric charge equation
arising from the fifth dimension, see, e.g., the R,; equation in (6.11), one may ask whether there
are any additional electrodynamic terms in the (6.16) above, in the circumstance where more

than a single axial index is employed. Because R,;n = Rynag = —Rpamn» 1t 18 clear that with
more than two axial indexes, i.e., R 0 (6.16) will identically reduce to zero. But we should

explore whether there is any additional electrodynamic information to be gleaned when exactly

two axial indexes are used in (6.16). Thus, we may examine, say:

Rssup + Rspps + Rpsp = _K(FAB;S + Fysp + Fsap ) = _K(FAB,S +Fgs a0 + Fpp ): 0. (6.18)
. - _2 . . .

We learn from (6.11), especially Ry, =—kF s =—k F°F,_, not to automatically eliminate a

field strength term such as F?s when it appears in a covariant derivative, i.e., F’s.. However,

the migration of covariant to ordinary derivatives in the cyclic combination of (6.16) removes

this complication. We know from (5.11) that F = F;, =0 as so their ordinary derivatives will
vanish as well. The remaining term F,; ;= (gA):FEB ),5 = gA,_,SFEB + g, F 85 =0 in (6.18), by
virtue of (5.6) and (5.17). Thus, (6.18) is identically equal to zero, not only because of the

Bianchi identity, but because of the inherent properties of the F,; and g,, developed in section

5. Thus, there is no additional electrodynamic information to be gleaned from (6.18).
We have now placed each of Maxwell’s equations on a solely geometric footing.

Maxwell’s source equation in covariant (lower index) form is specified by (6.9), namely,

Rys = —K Jp= —KkF° p.o , and there is an additional component in the 5-dimensional space given

by the latter of (6.11), namely, R =—Kj; =—KkF s = K F ”"F,. , which contains the very

central term £,0 .., =5 F 7 F,,, and which will be of great interest in the discussion to

follow. Maxwell’s magnetic equation is simply an axial component (6.16) of the first Bianchi

identity. And, the Lorentz force equation (2.6), upon which the foregoing geometrization of
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Maxwell’s equations is based, is no more and no less than equation (2.4) for geodesic motion in
the five-dimensional geometry. With source equations producing fields and with material bodies
in those fields moving over geodesics that are identical to and synonymous with the Lorentz
force, Maxwell’s electrodynamics now rests on the firm geometrodynamic footing of a five-

dimensional Kaluza-Klein geometry.

7. Calculation of the 5-Dimensional Curvature Scalar, and the Fifth-Dimensional

Components of the Einstein Equation.

Especially in light of the gravitationally-induced Ry = —1—16;2F “F

or ?

see (6.11), we now
turn our attention to the QED Lagrangian density 7c>£,,, = (— F7F, —A,j" ), and in particular,
to seeing if we can place this entire £,;, with sources, on a purely geometric footing, in vacuo.
In other words, we are now starting to take aim, as discussed in the introduction, at using an

Einstein-Hilbert Action of the general form S = IdeV to specify £,,,, with sources, but

without explicitly adding an £, We begin discussion here by deriving the five-dimensional

atter *
Ricci curvature scalar R = R*s =R+R’s, taking the four dimensional curvature scalar to be

R =R?,, since these are the clear candidates for inclusion in such an action. In addition, we

need R, if we wish to consider the five-dimensional extensions of Einstein’s equation, i.e.,

—xkTMx = RMy —%5MNR(5).

There are two ways to calculate R’s which lead to alternative, but equivalent expressions.
First, in (6.5), we have already found R;.. So, all we need do is raise the index using
RMs=g""R,, ,ie.,
Rs = (g™ F ps + T F™ — g™ 5y oy )= —kgF ™ = — 1 M, (7.1)
and then take the M =5 component. Second, alternatively, we can write the covariant Ricci

tensor as Ry = gy RN = 8o RN + g,sR’N, then take the R, = g, R°s + g R’s component,

which we rewrite as:

gssR55 =Ry; — g5,Rs. (7.2)
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In this latter approach, we can take advantage of the fact that g, =+1 = constant depending on

whether the fifth dimension is timelike (+1) or spacelike (-1), see the discussion following (5.7),

—2
and can make use of R, =—x F”F,

or

as already found in (6.10). In either approach, since the

unknowns in (7.2) are R°s and g._, the first step is to deduce RMs in (7.1).

Starting from (7.1), we separate all contracted indexes into their spacetime and axial
components. We can reduce many terms throughout making use of F*s =0 and its raised and
lowered variants, as well as I°zs =0, see (5.14). Along the way, we also use (5.1) to substitute
I'"sz = kF"s. This introduces another “gravitationally-induced” term — ;g “WFTsF*r asin the
second equation (6.11), which had no counterpart in the covariant-indexed Ry of (6.5).
Because F'sF™r is summed over all five dimensions, we can readjust the indexes according to

F'sF*r = F"™F,, =—F""F,,. Finally, recalling the “gravitationally-induced” term
—xF %56 = —}ZF “F_ #0 from (6.11), we use F %5 =0 to eliminate only ordinary derivatives

such as F*st =0, but not the covariant derivatives F*sx. The net result of all of this, is that

(7.1) reduces to:

RYs = g™ F 0 + T70F™ — g™ T 4 FO. + kg™ FF, )

_ _ _ _ . (7.3)
= K F™y = —(FMy + F ™M)= kg M = —K( M j(S)M)
In the above, we define an “ordinary” 5-dimensional current
M=FM e =g F e + T F™ — g™ T s FO:, (7.4)
as well as a “gravitationally-induced” five-dimensional current:
j(S)M = }75M;5 :;.gMSFO'TFOT ¢ 0 ) (7'5)

Returning with hindsight to (6.13) for which we define ji 5, = F’s;s =0, we see now that j(S)M is
zero in its covariant (lower index) form, but is “induced” to be non-zero when raised into
contravariant form. We noted earlier that j; = ;;yﬂlﬂ is a vector current and jg o< ‘/_/75W a
pseudoscalar. We raise the question, without exploration at this time, whether

Jis)p &< y_/}/ﬁysl/f =0 and j)5 < ;/_/7/S VY o< W =0 are also axial vector and pure mass-term al//
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currents which are zero in covariant form, but are induced to become non-zero when they are
raised into contravariant form, and whether this might yield a path to solving the chirality
problem of five-dimensional Kaluza-Klein theories.

Returning to our present task, which is to calculate R in two alternative ways, let’s now

separate (7.3) into two separate equations:
R'”S = —;‘(gﬂﬂFgﬁ,a + deFw - gﬂﬂFTﬁGFGT +;gﬂ5FO-TF0'T) d (7 6)
A B . _ , an .
=—xF™; = —K(F"”;a +F5”;5)E —kJ* = —’((jﬂ + j<5>ﬂ)

R =—xlg?F 0 — g T s F°: + kg F"F, )

- 3 2 ’ 7.7
:—K'FES;E:—K(FGS;G‘FFSS;S)E_K‘ISE_K(j5+j(5)5) o

where we use F*° =0 to eliminate one term from (7.7). The foregoing contain four distinct

current types, referenced above in relation to the chirality discussion, explicitly written as:

JP=F % =g"F 56 +TwF™ — g T s F°;. (7.8)
jo =F*s=kg" F"F,. (7.9)
J=F%0=g"F 50— g T poF°:. (7.10)
Jo =F"s=kg"FF,,. (7.11)

So, now we can write out the five-dimensional curvature scalar Rs =R+ R’s, leaving R

as a remaining unknown still to be deduced. The first way to do this, directly from a rearranged

(7.7), is to write:

Rs=R+Rs=R-x g"F"F, —&j°
(5 = s=R—-x ¢g"F"F_ —Kj . (7.12)

The second way to do this, based on (7.2) and using R = —;ZF F_ from (6.10), and (7.6)
rearranged into R*s = —E( J*+ kg™ F ‘"FM), and R, =R+ R’s multiplied through by g, into
8s5sRs) = 85sR+ g55R55 , 1t

—2 6 . . . uSpor
gssRes) = 2R+ 8esR's = g R+ Ry — g, R"s = g R— K FTF, + kg, (/* + k¢"F7°F, ) .(1.13)
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This last expression can, however, be reduced using g5y g”s =0, see (5.8), down to:

- -
gssRs =8sR—Kk FF, + Icgsﬂ]”. (7.14)

Keep in mind that g, =*1, depending on whether the fifth dimension is timelike or spacelike.

Equations (7.12) and (7.14) are totally-equivalent expressions, and they are each of

interest in different circumstances. Equation (7.14) is of interest, because it appears to resemble

the QED Lagrangian hc’S,,, = (—% F*F, —A,j" ) , and may provide a direct basis for
geometrically representing £,,, , if we can make a suitable association between g5, and A,
each of which is a dynamical field, to use in the term g u J*. So, in the next section, we will
explicitly explore the connection between the gravitational potentials g, and the
electrodynamic potentials Aﬂ . However, first, it behooves us to calculates the axial components

of Einstein’s equation generalized to five dimensions: — &7~ = RMx -10 M\R ., and here,

(5)>
(7.12) is the preferred expression.

To calculate the axial components of — kT™x = RMx —%5MNR we use (7.3) and (7.12)

(5)°

to write:

—kT"s = RMs =L 6YsR 5, = M+ j(S)M)—%é'Ms (R —k g F7F,, - ch). (7.15)

This splits into two equations: ji;,* = F**;s = kg F"F,. (1.9)

ks = R*s = —xlj* + j.o* )= —x(j* + x¢"F"F,.); and (7.16)

KT =R's—1R, =—Lulj + j, )i R=—1x(/ + k¢ F7F, )- LR, (7.17)

where we have employed (7.9) to consolidate the former and (7.11) for the latter. The four-
dimensional Ricci scalar R is still an unknown in (7.17) and elsewhere; in the next section, we

will see how to further deduce this this.

8. The Vector Potential, the Gravitational Potential, and the Exact QED Lagrangian

Once again, we start with (5.1), written out as (recall g, =0, see (5.6)):
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MA(

KFMr =T"1s :%gMA(gAT,S t8sar _gTS,A):%g 85a,1 _gST,A)' 8.1

It is helpful to lower the indexes in field strength tensor and connect this to the covariant vector

potentials A, generalized into 5-dimensions as Ay, via Fyp = Ay —Apy = Ay p — Ay, as such:

;(AZ;T —Ars ) = ;FET = ;gzMFMT = % gzMgMA (gSA,T —851,A ) = % (gSE,T —8s51x ) (8.2)

The relationship ;FZT = E(AZ;T - AT;Z): 3 (gmT - 8512) expresses clearly, the antisymmetry of

F;; in terms of the remaining connection terms involving the gravitational potential. Of

particular interest, is that we may extract from (8.2), the relation:

;AZ;T =3 8sxr = %_hSZ,T ’ (8.3)
using also gy = Mun +;hMN for the gravitational potential energy h,,,. If one forms

A;.r — Ar; from (8.3) and then renames indexes and uses g,y = gy > One arrives back at (8.2).
The reason we did not remove the covariant derivative via Fyp = Ay — Ay = Ag 1 — Apy, 1s that
in (8.3), A;.; is considered distinctly from — A, and so the covariant derivatives do not
become ordinary unless and until one forms Fyp = A;p — Ay = Ay — A,

Equation (8.3) is a first order differential equation which tells us that the covariant

derivative of the electrodynamic potential A; is identical with the ordinary derivative of the

gravitational potential A, . In the weak field limit, where covariant derivatives become

approximately equal to ordinary derivatives, ;AZ;T =3 8ss1 =3 KN

> Khsy 1+ = KA; 1, and so, integrating

based on this approximation, we obtain:
85z = ;hsz = 2;'Az~ (8.4)
Now, we return to examine (7.14) in this weak field limit, Ay = A; ;. Most importantly,

referring to (8.4), the final term in (7.14) becomes ;gs WJE = Z;ZAﬂ j*. Thus, substituting from
(8.4) into (7.14) yields:

and using & =2x/fic yields:
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-2 or .
gssRs, =~ g R+ K (- FF, +2A,j*). (8.5)

Now, let’s continue with this weak-field limit, to make several further connections of interest,
and especially, to deduce the four-dimensional Ricci scalar R = R°» which was still unknown in

(7.17). Because (8.5) contains gyR s, the exact expression for R, depends upon whether
gss =+1 (timelike) or g.; =—1, spacelike.
For a timelike fifth dimension:

R, =R+x F"F_+24,j") 8.6
) = or uJ" ) (8.6)

For spacelike, (8.6) becomes:

R, =—R+k (-F™F, +2A,j") 8.7
— L) =Rt K - or T2AT" ) (8.7)

Now, up until this point, all of the development has been based on a single supposition
introduced just after (2.6): the requirement that the Lorentz force must be represented as nothing

other than geodesic motion in a five-dimensional geometry, as expressed in (2.7) and (2.8).

Other than perhaps our imposing the requirement that F™" = —F™  every step taken since then
has been fully deductive, with no other assumptions. We have even left open the question of
whether the fifth dimension is timelike or spacelike, simply exploring the consequences in the
alternative, as pertinent. This has enabled us to fully specify the axial components of the energy

tensor, see (7.15) through (7.17), and to obtain the five dimensional Ricci scalar R ., , up to the

5)°
four-dimensional scalar R = R°, which remains undetermined in (7.17) and (8.5) through (8.7).
To deduce R = R, we now must make a new supposition, which we do as follows:

Many authors write the QED Lagrangian density as 7ic’£,,, = (—%F TF,—A, j“) (with
h=c=1). However, by rescaling the sign of the source current density, it is equally proper to
use the convention 7¢’S,,, = (—%F"’Fm + Aﬂj“), see, e.g., [12], page 30. By virtue of the
opposite signs as between F”F, and 24, j* in (8.6), and given that there is no choice of the

constant factors back in (3.2) and (3.3) which would have reversed this, we shall use this latter
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convention to write £,,,. Nor would any choice, by the way, have altered the ratio of —1:2

between the constant factors multiplying FF, and A, j*, into the —1:4 ratioin £,,,.
Now, using this ¢S, = (—% F7F, +A, j”), the action is formed according to

S(A,)) = ISSQED Hd“x . If, however, we can turn (8.6) and (8.7) into expressions in which the

ratio of the constant factors multiplying FF, and A, j* is —1:4 rather than —1:2, then we

could use these expressions to write QED in terms of a gravitational action, in vacuo, of the form
S= I kRAV . Because R = R’ is still an unknown, we shall now use these observations to
deduce R =R°;s as such:

We shall select R = R°+ in (8.6) and (8.7) such that the ratio of the constant factors
multiplying F”F, and A, j* changes from —1:2,to —1:4, and also, such that R only
contains F”°F__, and not Aﬂ J*. Again, these are affirmative requirements, not deductions. We

may impose these requirements by rewriting (8.6) and (8.7) as:

—2 or . —2 or .

Rs =R+& (-F7F, +24,j*)=x (-1F"F, +24,/"). (8.8)
R, =~-R+x (-F"F_+2A j*)=+x (L F"F_+24,j") 8.9
e T x5 = 0'T+ ﬂ] =+K ) 0'r+ y] . ()
It is then easy to deduce from these, respectively, also using hﬁ = %;2 = 8h£5 , that:

c c
—2 K
gssR=1K F‘"szh—F‘”FM, and (8.10)
c

where g, =*1 for a timelike (+) and spacelike (-) fifth dimension, respectively. The choice of
timelike versus spacelike, merely flips the sign of the (four-dimensional) Ricci scalar.

With R = R’, now established, we can go back and write the five-dimensional Ricci

scalars (8.8) and (8.9), respectively, as: ZhL = ;2
c

2 oT . K oT .
gsRs =K (L1F FUT+2Aﬂ]ﬂ)=4%(—fF F,+A,j")=4KeS,y, . (8.11)
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Apparently, the respective timelike versus spacelike choice also flips the sign for R, .

Therefore, it become possible to rewrite the QED action S(A),) = I Lo\~ gd'x as:
1
S(Aﬂ)=J‘SSQEDW/—gd“xzgss%J‘R(s)q/— gd'x, (8.12)

This is the Lagrangian (action) for the vacuum, because it does not contain any explicit matter

terms, but only contains R . We can put this into words by saying that the QED action is equal

to the five-dimensional Ricci scalar, integrated over the four-volume of spacetime. A Ricci
scalar derived from all five dimensions, integrated over ordinary spacetime, results in Quantum
Electrodynamics. QED is the four-dimensional manifestation of a five-dimensional universe!

This achieves the goal set out in the introduction, of generating QED out of an in vacuo action of
the general form § =+ .[ RdV , and (8.12) is the explicit form of this action.

Keep in mind, however, that is a weak-field limit, because it is based on the
approximation Ay = Ay 1, hence gy = Ehsz = ZEAZ, see (8.4). Thinking carefully about this
approximation, we realize that the term g, and not A, is to be is associated with the exact
€, - The usual £, is itself the weak field limit, that is, Ac’$,,, ~(-LF7F, +A, j*). If
we carefully backtrack, we can now deduce find the exact Sorp > for all field strengths, as
follows:

First, since g, = g” =1, for atimelike (+) and spacelike (-) fifth dimension,
respectively, we can rewrite (8.10) as R = %;2 gssFF__. Now, we employ this expression in
(7.12), and (8.10) in (7.14). Then we multiply (7.12) by g., to obtain, after reduction, including

855855 = 1, the following alternative expressions:

gsRs =—1x FTF, — kg, and (8.13)

—2, o . .
gssR(S):_%KF FO‘T+Kg5ﬂJ‘u' (8.14)
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Because these are equivalent expressions for g R s, we can equate these to deduce that
g5, )" =—8ss j°, or, in five-covariant form:

gj =0. (8.15)

This the direct relation which tied together the two method we used to obtain R, .
Next, we return to (8.11). The terms with A, j* were based on the Ay, = A, ;

approximation. The exact relation in (8.11), is that given geometrically by 4xc £, = g5sR s, -

Converting back via x = %hc? = SﬂG/ c*, and using (8.13) and (8.14) with some term
manipulation, we can now write the exact QED Lagrangian for all fields weak and strong, as:

Khe® Sy =—4KFTF, +4 g, /" =—1KkF F, —1g.j’ =L g R (8.16)

Now, we return to (8.3) which is an exact expression. In the weak field limit, where Ay = A; ¢,

we may make the approximate substitution g, = Ehsz = ZEAZ of (8.4) into the above, thus:

Khe Sy =~ L KFTF, +1g,, j* ~—LKF"F, +KA, " (8.17)

which recovers the customary QED Lagrangian. The action (8.12) contains an approximation
symbol, because the £,,, was taken to be the weak field — LxFF, +;Aﬂ J*. If we now use

(8.17), then the action (8.12) now becomes the exact expression, with i=c=1:

1
S(gSﬂ):gSSEIR(S)Rd4x:I£QED\/¥d4x
o |G A e N | Y R o)

(8.18)

where in the final set of terms, we have employed the weak field g., = ;hsz = Z;AZ . The
gss =1 simply represents the sign to be used depending on whether the fifth dimension is

timelike or spacelike. Once a choice is, made, this is either a plus or a minus sign.

9. Electrodynamic Energy Tensors, including the Maxwell Stress Energy
To be added.
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