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Abstract:

We examine a Kaluza-Klein-type theory of classical electrodynamics and
gravitation in a five-dimensional Riemannian geometry. Based solely on the condition that
the electrodynamic Lorentz force law must describe geodesic motion in this five-
dimensional geometry, it appears possible to place all of Maxwell’s electrodynamics on a
solid geometrodynamic footing. We make no choice as between the fifth dimension being
timelike or spacelike, but simply point out the impact in those places where this choice
makes a difference. In the end, we deduce the Maxwell stress energy tensor from a four-
dimensional variation applied to the five-dimensional geometry, and in the process, learn

that this fifth dimension must be spacelike.
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1. Introduction

The possibility of employing a fifth spacetime dimension to unite classical gravitation
and electrodynamics has intrigued physicists for almost a century. [1], [2] Early theorists
became perhaps overly-occupied with making assumptions about the scale or topology of the
extra coordinate dimension. [3] Following the path of Wesson and other current-day theorists
[4], we seek here to expose the main features of Kaluza- Klein theory irrespective of any
particular model, and most importantly, to make the connection between Einstein’s gravitation
and Maxwell’s electrodynamics which some have looked to 5-dimensional theories to provide,
as clear and solid as possible, and as independent as possible of the detailed choice of model.

Most fundamentally, we adopt the view of the above-noted theorists that matter and
electrodynamic charge are “induced” in the observed four dimensions of spacetime, from a
vacuum in five dimensions, and so, in keeping with the spirit of Wheeler’s program, [5] are of
completely geometrodynamic origin. Particularly, we seek to show how classical

electrodynamics emerges entirely from an Einstein-Hilbert Action of the general form

S = iJ-RdV where R is a suitably-defined Ricci curvature scalar, integrated over a suitable

multidimensional spacetime volume, and x = 87zG/ c* is the constant from Einstein’s equation

—&T*, =R", —1J8“/R. The reader will observe that this omits any Lagrangian density £,

atter

of matter, i.e., that it is not of the form § = J‘(Tl’f R+ £,...)dV and so is in the nature of action

equation for the vacuum.[6] In different terms, we seek to induce the entirely of Maxwell's
electrodynamics with sources, as well as the Maxwell stress-energy tensor, out of a
gravitationally-based vacuum.

The main line of development will be deduced, based on a single proposition: we shall
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require that the Lorentz force of electrodynamics, m——- = qF":
T

, must be represented as

fully geodesic motion in the five-dimensional geometry. It is not new for a Kaluza-Klein theory
to represent the Lorentz force as geodesic motion in five dimensions. However, the five-
dimensional theory and many of its usual features, become particularly transparent, and are
easily arrived at by straightforward deduction, when Lorentz force geodesics are taken as the

starting point for deduction, rather than as a deduction from some other starting point.



The foundation of this effort will be a five-dimensional Riemannian geometry, without
any changes or enhancements, which merely extends the entire apparatus of gravitational theory

into one more dimension. In five dimensions, we employ g, = g\ With uppercase Greek
indexes M,N =0,1,2,3,5 for the metric tensor, so g e with lowercase u,v =0,1,2,3 is the
ordinary metric tensor in the spacetime subspace. Inverses are defined in the usual manner
according to g" g, ="'~ and so g™ and g, raise and lower indexes in the customary
manner, but must be applied over all five dimensions to achieve proper five-covariance. The
covariant derivative of the metric tensor g, =0, as always.

While most authors who still study Kaluza-Klein theories treat the fifth dimension as
spacelike and a few have considered this to be timelike, e.g., [7], [8], [9], we shall approach the

fifth dimension as independently of this choice as possible. Where this choice does make a

difference, we shall point this out. If we define g, =7 + ;hMN in the usual manner with

=4 162G/ hc” , then for the weak-field limit g, — 77 - If the fifth dimension is timelike,
diag(?]MN )=(+1,-1,—-1,—1,+1); if it is spacelike, then diag(?]MN )=(+1,-1,-1,—1,—1). In either
case, 7 =0 for M# N . Note that the constant x in Einstein’s equation

—xkT*, =R", =% 8" R is related to the foregoing &, with fundamental constants restored, by

—2 . o -
kK =L1hcx” =87G/c*, with the overbar used to distinguish these two constants x,x. The

1
2
constant k& will appear frequently in the various equations herein.

At the very end, see equations (10.14) and (10.15) infra, in the course of establishing the

Maxwell stress-energy tensor, we will deduce that this fifth dimension must be spacelike.

2. Geodesic Motion in Five Dimensions, and the Lorentz Force

We start by maintaining the usual interval in the 4-dimensional spacetime subspace,

using dz’ =g wdx"dx” , and define the five-space interval as:

dT? = g\pdx™dx™ = g, dx"dx” + g, dx’dx" + g ,sdx"dx’ + g sdx>dx’ o0
=dt’ +2g,,d’dx’ + g dx’dx’ . .



The above is independent of whether the weak field g, — 7755 = %1, i.e., of whether the fifth
dimension is timelike or spacelike, and is generally model-independent.
Like any metric equation, (2.1) can be algebraically-manipulated into:
dx™ dx™
l=guw—= )
dT dT

(2.2)

which is the first integral of the equation of motion. In five dimensions, we specify the

Christoffel connections in the usual manner, that is, Iy =1 g™ (g ar1T T 81ax — &s1a ), hence
IMer =TV, As noted, we employ gunz =0 as usual, with the usual first rank covariant
derivative AMy =AMz +TMAzA%. We then take the covariant derivative of each side of (2.2)

above, and after the usual reductions employed in four dimensions, and multiplying the result

through by dT?/dz?, we arrive at a five-dimensional geodesic equation which bears an exact

resemblance to the four-dimensional gravitational equation:

2. M
dx iy, B, 2.3)
dt dr dt

The above contains five independent equations. We are interested for now in the four

equations for which M = x, which specify motion in ordinary spacetime:

2 u L 5T
L T -y (2.4)
dt dr drt

This expands, using the metric tensor symmetry g, = &xm» O:

2 U o T 5 o 5 5
LS S ) NGO T 2.5)
drt dr drt drt drt dr dr

Now, let us contrast (2.5) above to the gravitational geodesic equation which includes the

Lorentz force law, namely, equation (20.41) of [10]:

dzx:‘ LT dx® dx* ¢ Fh dx’® _
dt dt dt m dt

0. (2.6)

We now take a critical step: We require that the Lorentz force as expressed above, must

be represented as nothing other than geodesic motion in the five-dimensional geometry. The



first two terms in (2.5) and (2.6) are identical, and they specify geodesic motion in an ordinary
gravitational field absent any electrodynamic fields or sources. The absence of any mass or

charge in the first two terms captures the Galilean principle of equivalence, and further expresses

Newtonian inertial motion in a gravitational field via the Christoffel connections I .
If we require the Lorentz force to also be fashioned as geodesic motion through
geometry, then we can do so by defining the third terms in (2.5) and (2.6) to be equivalent to one

another, and the fourth term in (2.5) to be zero. Therefore, we now define:

5 o o
o, P _ 4 B 2.7)
drt drt m dr

I'ss=0. (2.8)

5 5
One might wish to consider I'“ss 0, in which case I*ss flifli in (2.5) would become an
T dt

additional term in the Lorentz force law, but in the absence of experimental evidence for any
deviations from the Lorentz force law, we shall proceed on the basis of (2.8).

The relationships (2.7) and (2.8), ensure that Lorentz force motion is in fact, no more and
no less than geodesic motion in five dimensions. All else through section 7 will be deduced from

(2.7) and (2.8).

3. Placing the Lorentz Force on a Geometrodynamic Footing as Geodesic Motion
Now, let us focus on equation (2.7). We can divide out dx"/ dt from (2.7), and then

write the remaining terms as.

5
o, P o [, 4 @3.1)
dt hc m
5
o, P o4
dt m

where we have explicitly restored 7 =c=1. Now, we separate the proportionalities
dx’/dt o< g/m and 25 o< —F*5, and turn the proportionalities o< into equalities by restoring

their dimensional and numeric constants, starting with the former proportionality.



Irrespective of whether the fifth dimension is timelike or spacelike, we take dx® to be
given in dimensions of time, so that dx’ / d7 is a dimensionless ratio. In the event that the fifth
dimension is spacelike, one need merely divide through by c¢. In rationalized Heaviside-Lorentz
units, the electric charge strength g (for a unit charge such as the electron, muon and tauon) is
related to the dimensionless (running) coupling & = ¢° / 4mhc which approaches o — 1/137.036

at low energy. The value of & is the same in all systems of units but the numerical value of ¢q is

different, so it is imperative that the exact expression for dx’ / dt o< g/m be based on & rather

than ¢, and be independent of where the 4z factor appears. Further, to match dimensions with

Jhe the mass m needs to be multiplied by a factor of JG . Taking all of this into account, we

now define:

5
d” _ 1vhea 1 1 g__ 1 24 (3.2)

dt bJGm  bAarGm  JpeS bxm

2 1 d>  1vhca 1 1 ¢ 2 ¢ q_ckbdxX’

cz;_\/4ﬂG dt b\/Em _Z\/4ﬂG;_ clxkbm m 2 drt

@ _ Idhea 1 1 q_ 2 g
dt bJGm banGm  xbm
u dx’ 9 ru U 2
2F SO'_E__F o fOI‘LF. F 50 =C KbF o
dr m

where b is a dimensionless, numeric constant of proportionality that we are free at this moment

to choose at will, which we will carry throughout the development, and which will ultimately be

deduced to be b* =8 when we obtain the Maxwell stress-energy tensor, see equations (10.14)
and (10.15) infra. The equivalence between the first two terms is independent of the system of

units but the terms containing ¢ are in Heaviside-Lorentz units.
Then, we substitute (3.2) into (3.1) to obtain:

5o =LbKF* s . (3.3)



czlcbd_xsz_i F”ngCZKbF”g
2 drt m 4

d’  1vhea 1 1 g 2 g

E=_;E b\/4nGm:_c2;bZ

The definitions (3.2) and (3.3), together with I'“ss =0 from (2.8), when substituted into (2.5),
turn the five-dimensional geodesic equation (2.5) into the Lorentz force law, and places this
electrodynamic motion onto a totally-geometrodynamic footing. Of course, (3.3) is of further
value, because it also relates the mixed field strength tensor F*5 to the extra-dimensional
connection components I'*s», and this will lead to numerous other results. Although the Tyt

are not themselves tensors in general, (3.3) does suggest that that particular components I'“ss do

transform in the same way as the mixed tensor F*,, multiplied by a the constant factor k. This
“suggestion” is formally validated by the result (6.4), infra. (See Klein’s [2], between equations
(6) and (7), which is effectively the same as (3.3) above.)

The question of whether the foregoing are fair suppositions, now rests on the correctness

and sensibility of the deductions to which they lead.

4. Timelike versus Spacelike for the Fifth Dimension, and a Possible Connection to
Intrinsic Spin

The results above are independent of whether the extra dimension is timelike or
spacelike. In this section, we make a brief digression to examine each of these alternatives in a
very basic way. This section can be safely skipped by the reader wishing to proceed straight into
the main line of development.

Transforming into an “at rest” frame, dx' = dx”> =dx’ =0, the spacetime metric equation

dt* = g, dx"dx" reduces to d7=1%,/g, dx", and (3.2) becomes:

d_xszil 8o 49

. 4.1
dx’® b\ 4nG m “-D



For a timelike fifth dimension, x’ may be drawn as a second axis orthogonal to x°, and
the physics ratio ¢g/m (which, by the way, results in the g/m material body in an
electromagnetic field actually “feeling” a Newtonian force in the sense of F'=ma due to the
inequivalence of electrical and inertial mass) measures the “angle” at which the material body
moves through the x°,x” “time plane.”

For a spacelike fifth dimension, where one may wish to employ a compactified, hyper-

cylindrical x” = R¢ (see [11], Figure 1) and R is a constant radius (distinguish from the Ricci

scalar by context), dx’ = Rd¢. Substituting this into (3.2), leaving in the £ ratio obtained in

(4.1), and inserting c¢ into the first term to maintain a dimensionless equation, then yields:

Rdp _ \Nhea 1 1 q g _cxbdd

cdt  bNGm T barGm m 2 dr

27 5 2

¢ kb dx _c Id)Rd(Z):_ 2_ q 4.2)

2 drt 2 cddrt ctkbm

d Rdg 1~hca _ 1 1 q_ 2 q
dr  cdt bGm bAJarsGm  CFxbm
d’ _ 1Nhea 1 1 qg_ 1 gq
dr  4b JGm 4b JaxG m 2 kb m
d _ Ivhea _ 1 1 q__ 2 q
dr b\/Em b \4nG m kb m

We see that here, the physics ratio ¢/m measures an “angular frequency” of fifth-dimensional

rotation. Interestingly, this frequency runs inversely to the mass, and by classical principles, this
means that the angular momentum is independent of the mass, i.e., constant. If one doubles the
mass, one halves the tangential velocity, and if the radius stays constant, then so too does the
angular momentum. Together with the *+ factor, one might suspect that this constant angular

momentum is, by virtue of its constancy independently of mass, related to intrinsic spin. In fact,



following this line of thought, one can arrive at an exact expression for the compactification
radius R, in the following manner:

Assume that x’ is spacelike, casting one’s lot with the preponderance of those who study
Kaluza-Klein theory. In (4.2), move the ¢ away from the first term and move the m over to the
first term. Then, multiply all terms by another R. Everything is now dimensioned as an angular
momentum m - v - R, which we have just ascertained is constant irrespective of mass. So, set this

all to =4 n#, which for n =1, represents intrinsic spin. The result is as follows:

3
RO p_Ihca p (1 ¢ poily 4.3)
dr b JG b 472G 2
RdPpoyp NI O p 1 € jr=slyp
dr b JG b \J4nG 2
d _ 1k 1 1 ¢ 1 ¢

At 4 \Gm  AbanGm 2 Kxbm

Now, take the second and fourth terms, and solve for R with n =1, to yield:
b Gh b
R=——,|—=—~1L,, 4.4)
wWalcd 2a ”

where L, = Gh/ ¢’ is the Planck length. This gives a definitive size for the compactification
radius, and it is very close to the Planck length. (Keep in mind that we will eventually find in
(10.14) infra that b* =8, so (4.4) will become R = LPW.) What is of interest, is that & is a
running coupling. At low probe energies, where @ —1/137.036, R=5.853-b-L,. However,

this is just the apparent radius relative to the low probe energy. If one were to probe to a regime

where & becomes large, say, of order unity, & =1 then R = %LP is quite close to the Planck



length of Wheeler’s geometrodynamic vacuum “foam.” [10] at §43.4, [12]* Since we have based
the foregoing on a unit charge with spin %2, and since this is independent of the mass, the
foregoing would appear to characterize the compactification radius R for all of the charged
leptons, and to provide a geometric foundation for intrinsic spin. This suggests that for &« =1 or
on the order of unity, the compactification radius of the fifth dimension may become
synonymous with the Planck length itself, or the Schwarzschild radius of the vacuum, or
something close to one of both of these.

While (4.2) applies generally for a compactified spacelike fifth dimension, before
proceeding too far with this intrinsic spin interpretation (4.3), however, it is worth noting that for

a neutral body, g =0, such as the neutrino, we have d¢/d7 =0, and so there is no fifth-
dimensional rotation. More generally, any electrically-neutral body must be considered to be

non-moving through the x° dimension, dx’ = 0. This would suggest that the neutrino has no
intrinsic spin, which is, of course, contradicted by empirical knowledge. So, (4.3), while
intriguing, does need to be studied further. Also, the intrinsic spin interpretation (4.3) suggests
conversely, that any elementary scalar particle which has no intrinsic spin, must be electrically
neutral. This is, in fact, true of the hypothesized Higgs boson. [13]

One other point should be made before returning to the main development, especially
because we will later be compelled in (10.14) to regard the fifth dimension as spacelike, and
because a primary discomfort which many physicists have with Kaluza-Klein theory emerges
from the compactified, fifth spatial dimension, because this dimension does not appear to have
any physical manifestation. [14]

Despite the above puzzle regarding the neutrino, the use of the term “intrinsic” to
describe an inherent quantized angular momentum of elementary particles, covers up what is

actually a deep ignorance of what “intrinsic spin” really means, geometrically. Why? For a

* By way of review, the Planck mass, defined from the term atop Newton’s law as a mass for which GM P2 =fic,

is thus M, = hc/ G . In the geometrodynamic vacuum, the negative gravitational energy between Planck
f 3 . o
masses separated by the Planck length L, = Gh/ ¢” precisely counterbalances and cancels the positive energy of

the Planck masses themselves. The Schwarzschild radius of a Plank mass R =2GM ,, /c* =2 Gh/c3 =2L,.
" This may be resolved if one considers Kaluza-Klein in a non-Abelian (Yang-Mills) SU(2)wxU(1)y rather than the
present abelian U(1).,, context, because the neutrino will then have a non-zero weak isospin / 3= +% tolay a

geodesic foundation for its intrinsic spin, and by recognizing that in the context of U(1).,, one really cannot speak
anyway, about any particles other than charged leptons and photons.
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material body to have an angular momentum, there must implicitly be a radius R with which
that body circles about an origin. Even the smallest objects, if they have an angular momentum,
must be rotating or spinning — at some finite spatial radius — about an origin. At the same time,
nobody believes that intrinsic spin represents an angular momentum about a radius R in the
three usual spatial dimensions. By associating intrinsic spin with motion through a fourth,
compactified, hyper-cylindrical spatial dimension, one simultaneously makes sense of intrinsic
spin and of a compact fourth spatial dimension. The material body now has a spatial radius R of
rotation through a spatial dimension other than the usual three spatial dimensions to give
meaning to its “intrinsic” spin, and the compactified fourth dimension now takes on real,
physical meaning as something which is physically observed, via the phenomenon of intrinsic
spin, and not merely a fictional idea that gives people pause about Kaluza-Klein theories
specifically, and dimensional compactification in general.

In sum, the understanding of intrinsic spin as cyclical motion through a fourth dimension
of space which is curled up into a radius on the order of the Planck length, if this can be
developed further and sustained, may be useful to overcome one of the most nagging objections
about Kaluza-Klein theories, and would underscore a clearly-observed, physical manifestation of
the fourth space dimension, rather than requiring one to reply, with some disingenuity, that the
extra space dimension is too small so nobody will ever see it anyway. Thus, we conclude with
the provisional hypothesis, that the fourth spatial dimension is best thought of as the “intrinsic

spin dimension” of a real, physical, five-dimensional spacetime.

5. Symmetric Gravitation and Antisymmetric Electrodynamics

Now, following the brief digression in section 4, let us turn back to the association

56 = ib;F # in (3.3), which arises from the requirement that the Lorentz force be represented

as geodesic motion in five dimensions. We know that F*" = —F" is an antisymmetric tensor.

By virtue of (3.3), this will place certain constraints on the related Christoffel connections

™5t =1 g™ (g, 51+ g1as — €514 )» and it is important to find out what these are. These

constraints, in the next section, will provide the basis for placing Maxwell’s equations onto a

purely geometrodynamic footing.

11



First, because we are working in five dimensions, we will find it desirable to generalize
F* to FM. We make no a priori supposition about the additional components in F™", other

than to require that they be antisymmetric, F™ =—~F™ . Any other information about these

new components is to be deduced, not imposed. Second, we generalize (3.3) into the full five

; ; . TM—_1,MA —_ 1, M _ 1M
dimensions, thus: T"ss =—3 g " gy, =—58ss =1bkF s

™5y =1 bxFMs. (5.1)

By virtue of (2.8), I'“ss =0, we may immediately deduce that:

s =LbkF*“s =0. (5.2)

As it stands, F™s is a mixed tensor, and it would be better to raise this into contravariant

form where we can clearly examine the consequences of having an antisymmetric field strength

FMY = —F™  Thus, let us now raise the lower index in (5.1), and at the same time equate this

to the Christoffel connections, as such:

EhRFMN = Lhrg™ FMy = g™ sy =L g™ e™ (g, 05 + 8ya s — Zsx.n ) (5.3)

Now, we use (5.3) to write F* =—F" completely in terms of the metric tensor g,,, and its

first derivatives, as:

%bKFMN = _%bKFNM = gMAgZN (gAS,Z +8yas _gSZ,A): _gNAgzM(gAs,z +8ras _gSZ,A)'(5-4)

Renaming indexes, and using the symmetry of the metric tensor, this is readily reduced to::

MX TN :0

8 8 81xs (5.5)

This is an alternative, geometric way of saying that F™ =—-F™

12



We can further simplify this using the inverse relationship g™ g, =", which we can
differentiate to obtain (g™ gy )’A =g Agy+8 8a=0,1€, g g\ =—8 A&y . This

can then be used with A =5 to reduce (5.4) to the very simple expressions, for both the

covariant and contravariant metric tensor:

gMN,S =0; 8MN,5 =0. (5.6)

This states that all components of the metric tensor are constant when differentiated with respect

to the fifth dimension.

Now, we return to write out I'*ss =1 g** (gAi5 + 8sas— gSS,A)z 0 from (2.8), see also
(5.2). Combined with gy =0 above and g™ g, , =—g " .agqy we further deduce that:

§54=0; g5, =0 (5.7)

This means, quite importantly, that g.; =constant and g>° = constant , everywhere in the five-
dimensional geometry.

To fix these constant values, consider the weak-field limit g,y — 77, - If the fifth
dimension is timelike, diag( p ) = (+ 1,—1,—1,—1,+1) and g = g55 =+1. Ifitis spacelike (briefly
explored regarding intrinsic spin in section 4), then diag(f]MN) =(+1,-1,-1,-1,—1) and
gss =g =—1. But, by (5.7), if the above expressions for g.; and g* are true anywhere, then

they are true everywhere. Therefore:

8ss = g55 =+1,0r g, = g55 =-1, (5.8)

respectively, for a timelike or spacelike fifth dimension. In either case, timelike or spacelike,
g7g,s=1. Theinverse g g;s=g"g.s+8 gs=8" g, +1=05"5 =1 then leads also to the null

condition:

¢Pg. =0, (5.9)

which applies irrespective of the timelike versus spacelike choice.

Finally, using (5.1) together with (5.6) and (5.7), we may deduce:

LbF s =Tss =1 g% (g5 5 + 85as — 8554 )=0. (5.10)

13



Taking this together with (5.2), T'*ss = %b;F #5 =0, we have now deduced that all of the newly-
introduced fifth-dimensional components for the mixed field strength tensor are zero, i.e.,

LhxFMs =TVss = 0. (5.11)

The free index in F™s =0 above can easily be lowered to also find that the covariant:

Fy =—F,, =0. (5.12)

But, since the ordinary spacetime components of F*, are non-zero, one should take care to

ensure that the contravariant tensor components F° =—F =0 as well, that is, we want to

make sure that the fixed index “5” in (5.11) can properly be raised. One can employ (5.1)
together with the explicit components for I''sy to write:

FY™ = gENFMZ = gENFMSZ :%gENgMA(gAs,z t 8xas _gSE,A)' (5.13)

Expanding this to separate the & from the 5 components, and applying (5.6), (5.7) and (5.9) as
needed, together with F™ =—F™ to eliminate the only term which (5.6), (5.7) and (5.9)
cannot directly eliminate, one can indeed deduce that in addition to (5.11) and (5.12):

FM™W=—FM=0, (5.14)

Now, the free index can be easily lowered, referring also to (5.1), to find that:

LpF iy =Dsm = ys =0, (5.15)

ie., F°u =0. So, we find that all of the newly-introduced fifth-dimensional components of the
field strength tensor F MN whether in raised, lowered, or either mixed form, are equal to zero.

Equations (5.11), I™ss =0, and (5.15), I°sm =Ims =0, taken together, tell us that as well, the
“rule” that any Christoffel connection with “two or more fifth-dimension indexes,” is also equal

to zero.
Combining (5.1) with F™ =—F>" =0 as well as F,,; =—F,,, =0, we may deduce two

further relationships:

g M5y =—gP Ty =0 and g, TMss =—gq [ Vst =0, (5.16)

which are variations of the “two or more fifth dimension index” rule noted above.

14



It is also helpful as we shall soon see when we examine the Riemann tensor, to make note

of the fact that:

Mers =38™ (gAZ,T T 8tar ~8r1a )+%gMA (gAZ,T,S T 8tars ~8smas ) =0. (5.17)

This makes use of (5.6) and the fact that ordinary derivatives commute. A further variation of

(5.17) employs (5.1) to also write, for the field strength tensor:

™sps = %bZ‘F Mys=0. (5.18)

i.e., FMx5=0. Lust like the metric tensor, all components of the field strength tensor are
constant when differentiated with respect to the fifth dimension.

Again, at bottom, every result in this section is a consequence of relationships (5.1) and
(5.2), taken in combination with the antisymmetric field strength F™" =-F™  Now, we have

the tools required to turn to the Riemann tensor, and to Maxwell’s equations.

6. Maxwell’s Equations as Pure Geometry

We have shown how Lorentz force motion might be described as simple geodesic motion
in a five-dimensional Kaluza-Klein spacetime geometry. But equations of motion are only one
part of a complete (classical) field theory. The other part is a specification of how the “sources”
of that theory create the “fields” originating from those sources. In a complete theory, the
equations of motion then describe motion through the fields originating from the sources. It is
now time to place Maxwell’s equations on a firm geometric footing.

In five dimensions, we specify the Riemann tensor in the usual way, albeit with an extra

fifth-dimensional index. That is:

R = T smvn + T enom 4+ TenI s = Toaml P ow (6.1)

Now, let’s consider the M =5 component of this equation, that is:

R*psn = —T"gsn + T x5 + Tpnl s —TpsIM o (6.2)

By virtue of M™srs =0, equation (5.17), which is in turn a consequence of gy s = 0,

which is in turn a consequence of F MN = _F™ "the second term zeros out, and (6.2) becomes:

R*psn =—T"psn + a5 — TpsTsx . (6.3)

15



Substituting (5.1), i.e., ™y = %b;F Ms into the above, and with some minor term
rearrangement, we immediately arrive at the very critical expression:

R*psx = —ib;‘(FAB,N +T e F s — FZBNFAZ): _%bEFAB;N . (6.4)

In particular, these three remaining terms of R*gsx turn out to be identical with the expression
for the gravitationally-covariant derivative F*sx of the mixed field strength tensor, times the
constant factor — %b; This leads us immediately to a geometric foundation for Maxwell’s

equations in the following way:
As regards Maxwell’s electric charge equation, we contract (6.4) down to its Ricci tensor

component Ry, and define a five-current J, with covariant 5-space index:

Ry =R sz = —%b;'(FEB,Z +T e F's — FTBEFZT): —%bEFZB;Z = —%b;‘JB . (6.5)

Now, we separate this into the two equations as such:

Ry = —ib}(F"ﬁ,a + T F p—TpsF %)= —4bKF o = —ib;fﬂ’ and (6.6)
Rss = _%b;‘(FES,E +T e Fls — FTSEFET): _%b;‘FES?E = _%b;‘JS’ 6.7)

In (6.6), note that because F’r =0 and 15 =0 (see 5.15), we can easily drop the X, T indexes
down to o,7. In (6.7), however, we leave F”ss as is because as we shall note in a moment, this
term is not zero.

In (6.6), we discern the four-covariant derivative Fp.6 = F po+1wF 3 =1 psF ¢,
which is what allowed us to drop F* sz to F%ss. This means that J 5 = F’po is the observed
electromagnetic current source density, with covariant index. This is Maxwell’s electric charge
equation, on a geometric foundation.

For the fifth-dimensional component R, in (6.7), we can use F's =0 to eliminate the
first two terms inside the parenthesis, but the third term is not zero. For the third term, we again

employ the substitution I'™sy = %b;F My from (5.1). Thus:

Ry =—L1b’k FF, =—LbkF sy =—L1bxJ,. (6.8)
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In the above, we have used F'sF*r = F " F,, =—F" F,, =—FF__. Note, that we raise and
lower indexes while they are five-dimensional, then we reduce to lowercase Greek indexes via
F¥ =F,,=0.

Now, we begin to notice a significant result: Despite the F*sy = F %50 + F’s;s term in
(6.8) containing components of a mixed tensor which vanish in their own right, namely F*s =0,
this term for R, is not equal to zero, and so, F *ss #0. Rather, we find that the covariant
derivative term F¥sz = F%s.0 + F’ss5 #0 does not vanish even though F % =0, and in fact,

leaves a very central term F° F__ found in the QED free-field Lagrangian

Loco (kreey =~ 7 F 7 Fyp andin Ty yaxwen = —(F “F,—30"F ‘”Fm), the Maxwell stress-energy
tensor in Heaviside-Lorentz units. One may think of F*ss = %b;F 7F_. #0 as being
“gravitationally induced” out of F*s =0, solely as a non-linear gravitational effect, because in

the absence of gravitation, covariant derivatives approach ordinary derivatives and so

F¥sy — F*sy =0. This induced term originates from the final term — " sumI*sx of the
. A . . b A Y T _ | 122208 =T .
Riemann tensor R”smn, via the progression I'"snI™sm — I'7s1l x5 = 1. b" K F™rF "z, starting

from (6.1), and using I'™sz = ib;FMz from (5.1).
So, the upshot of (6.8), is that the fifth component of the five-covariant current source
density in a five-dimensional spacetime, J, = F Ty = ibEF °F,,, is not zero despite F =0, is

gravitationally-induced from the term I'"nI™sum in the Riemann tensor, and carries the F7F,,

scalar which is central to QED and the Maxwell stress-energy tensor and which, in the free-field
Lagrangian density, represents the kinetic energy of a photon.

Turning now to Maxwell’s magnetic equation, we first lower the A index in (6.4),

A .
Raowg = 8uaR 858, and use R,z = Rynap tO Write:

Roog = —%b;(gMAFAB,N + gMAFA):NFZB — gMAFEBNFA):): —%b;‘gMAFAB;N = —%b;'FMB;N . (6.9

Maxwell’s magnetic equation then arises straight from the 5-dimensional rendition of the “first”
Bianchi identity:
Rynap + Ryapn + Rypxa =0 (6.10)
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Making use of (6.9), the M =5 component of this is:

Rsxap + Rspapn + Rspaa = _%bK(FAB;N + FBN;A + FNA;B): _%bK(FAB,N + FBN,A + FNA,B): 0, (6.11)

where we account for the well-known fact that in the cyclic combination of (6.11) with
antisymmetric tensors, the Christoffel terms in the covariant derivatives cancel identically, so the

covariant derivatives becomes ordinary derivatives. In the NAB =vaf subset of this, we
immediately obtain Maxwell’s magnetic equation

Fafﬁ,v +F,6v,a + Fva:,ﬁ = 0 (612)

In light of our earlier having found some new terms in Maxwell’s electric charge

equation arising from the fifth dimension, see, e.g., the R, equation in (6.8), one may ask

whether there are any additional electrodynamic terms of interest in the (6.11) above, in the
circumstance where more than a single fifth-dimensional index is employed. Because

R pvn = Rynas = —Rpamn » 1t 18 clear that with more than two fifth-dimensional indexes, e.g.,
R, . (6.11) will identically reduce to zero. But we should explore whether there is any

additional electrodynamic information to be gleaned when exactly two fifth-dimensional indexes

are used in (6.11). Thus, we may examine, say:

Rsspp + Rspps + Rspsa = _%bK(FAB;S + FBS;A + FSA;B): _%bK‘(FAB,S + FBS,A + FSA,B): 0. (6.13)

We learn from (6.8), especially Fss = %b;F “"F_ # 0, not to automatically eliminate a field

strength term such as F°s when it appears in a covariant derivative, i.e., F%s.. However, the
migration of covariant to ordinary derivatives in the cyclic combination of (6.11) removes this

complication. We know from (5.12) that Fy; = F, =0, so their the ordinary derivatives of these
will vanish as well. The remaining F,g 5 = (gAZFZB )!5 =g sF B+ g,,F 85 =0 in(6.13), by
virtue of (5.6), g,y s =0, and (5.18), F*ss5=0. Thus, (6.13) is identically equal to zero, not

only because of the Bianchi identity, but because of the inherent properties of the F,; and g,;

developed in section 5. Thus, there is no additional electrodynamic information to be gleaned

from (6.13).
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We have now placed each of Maxwell’s equations on a solely geometric footing.

Maxwell’s source equation in covariant (lower index) form is specified by (6.6), namely,

R, = —%b;J 5= —%b;F .0 . The fifth component of this source equation, (6.8), contains the

very central term £,c, .., =—5F 7 F,

-+ » which is central to QED and to the Maxwell stress-
energy tensor. Maxwell’s magnetic equation is simply a fifth-dimensional component (6.11) of

the first Bianchi identity Ry.s + Ryapy T Rusna = 0. And, the Lorentz force equation (2.6),

upon which the foregoing geometrization of Maxwell’s equations is based, is merely the

equation for four-space geodesic motion in the five-dimensional geometry,

d’x* dx”™ dx" . . L. . .
1 + st Jr de =0, (2.4). With source equations producing fields and with material
T T dt

bodies in those fields moving over geodesics that are identical to and synonymous with the
Lorentz force, Maxwell’s classical electrodynamics with the Lorentz force law now rests on the
firm geometrodynamic footing of a five-dimensional Kaluza-Klein geometry. Now, let’s turn

our efforts toward deriving the energy tensors and scalars associated with the foregoing.

7. Calculation of the Five-Dimensional Curvature Scalar

We begin discussion here by deriving the five-dimensional Ricci curvature scalar
R = Rz = R+ R’s, where the ordinary four-dimensional curvature scalar R = R°,. We’ll start
with R.

In (6.5), we have already found R;,. So, all we need do is raise the index using

RMs = "Ry, =—Lbxg " F oy =—LbxF ™y =—LbxJ™ ie.,

RMs =—LpgF™; =1 bZ‘(FZM,z +T e F™ + FMTZFZT): —%bEJM ) (7.1)

4 R

and then take the M =5 component. Above, we simply employ the definition of the covariant
derivative of a second-rank contravariant tensor, particularly, of F™.s .
Now, we separate (7.1) into:

R*s = 1b;F07‘;O. = —%bE(Foﬂ,o +T6F™" + FﬂmFTa): _%b;-]ﬂ , and (72)

R

R’s = —%b;‘FES;z =-1 b;'(FES,z + I F" + FSTzFZT)Z —%b;‘JM . (7.3)

T4
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In the former equation, (7.2), we employ the same set of reductions used in (6.6), and we see that

R*s contains the contravariant current source density J* = (p,J wod 20d 3 ) In (7.3), the first

two terms can be eliminated because F '~ =0, so with suitable upper-to-lower-case reduction of

. . T5
Greek indexes also via F/° =0, we have:

R’s =—1bxF™y = —1bx W F ™ =—L1bxJ’. (7.4)

— 1

While (5.1) tells us that sz = %b;F Mg | this is the first time we have had to work with T,
and because I’ =I5, this cannot be related directly to F,, =—F__. So, let’s find out where

the F?'F__ term comes in.
Another way to arrive at (7.1) from (6.5) is to write:

RMs = g™ R, =—Lbi(g " F 5z + g" I s F "5 — g™ T as Fr )= —LbaF ™z =—LbxI ™, (7.5)

=—3 =—7

which merely entails using the g™ to raise the indexes in a five-covariant manner. This
equation is identical to (7.1), just in a different form. The M =5 component is then:

R's =—1biclg P (FOpo + TmF s =T 3o F: )= g T 5o F s )= —LbkF ¥ s =—L1bkJ°,  (7.6)

where we again use suitable F T3 = 0 -based reductions, and have also expanded the final term

— g""T"ss F¥1 in (7.5) into its spacetime and fifth-dimensional parts. Contrasting with (6.6), we

see that F7p0 + 1wl s =T poF'7c = J 5 is simply the lower index current density J,. And, in

the remaining term, we may now employ the (5.1) substitution I'"sz = ibEF 's. So, (7.6) now
becomes:

R's=—1brlg™ ], + g LbxF o F, )= —1br(g* ], + g7 )= —+bxg™J, =—LbxJ®,  (1.7)

using J, = ib;F‘”Fm from (6.8), and F'sF*r = F"“F, =—F" F,, =—F“F__ from following
(6.8). So, simply put, R’s also contains the F“ F,_ term, but it arises from the raising of the
index in g*®J, =J°, and so contains the term combination g**J 5t g” %b;F 7F_ . Ttalso

helps to see J° directly as:

I =g, + 8% LbkFF,,, (7.8)
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This expression (7.8) will play a central role in the section 10 derivation of the Maxwell tensor.

Returning to compare (7.4) and (7.7), this also means that:

CwF7 =g, +g% LbkF, F. (7.9)

So, now we have all the ingredients needed to write out the five-dimensional curvature

scalar R =R+ R’s, leaving R as a remaining unknown still to be deduced. Using (7.7), we
simply write:

Ry =R+R%s=R—1¢ b’k FF, —tbxg*J,. (7.10)

The four-dimensional Ricci scalar R = R’ is still an unknown in (7.1). Now, let us see

if there is a way to deduce R.

8. The Einstein Hilbert Action, and Derivation of the Energy Tensor and the Ricci Tensor,
from Five-Dimensional Variation

At this phase of development, we are at a juncture: Up until this point, all of the
development has been based on a single supposition introduced just after (2.6): the requirement
that the Lorentz force must be represented as nothing other than geodesic motion in a five-
dimensional geometry, as implemented through (2.7) and (2.8). Other than perhaps our
imposing the requirement that F™" = —F™  every step taken since then has been fully
deductive, with no other assumptions. We have even left open the question of whether the fifth
dimension is timelike or spacelike, simply exploring the consequences in the alternative, as

pertinent. This has enabled us to place Maxwell’s equations, deductively, on a fully geometric
footing, fully specify the fifth-dimensional components of the Ricci tensor R™s, and obtain the

five dimensional Ricci scalar R ., but only up to the four-dimensional scalar R = R° s, which

(5)°
still stands out as undetermined. Determining R, would give us a window into R”,, and this in

turn into the remaining 7, components, among which, one would expect to find the Maxwell
stress energy tensor, which would be a final check on the validity of this entire path of
development. So, we need to find R. To deduce R, we must now, finally, make a new

supposition beyond that of Lorentz force geodesics, which we do as follows:
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Some theorists, particularly those who have adopted the so-called “Space-Time-Matter”
view [4], seek the derivation of Einstein’s equations out of a five-dimensional Riemannian
geometry without the introduction of explicit matter source terms. There are perhaps several

ways to frame this objective: the one we shall choose here, as set forth in the introduction, will

be to employ an Einstein-Hilbert action of the general form § =5 I RdAV , omitting any source

term £Matter 4

which is to say, not using an action § = j(ﬁR + 8.0 )dV . We do this is as

Matter

follows:
Let us now posit that the action of the five-dimensional Riemannian geometry that we
have been exploring herein, is to be defined over the four-dimensional spacetime of our common

physical experience, in the form:

S(gun) =2 [RyaV = [ (L R+ R )V . (8.1)

This is a completely geometric definition of the action, without any explicit source term, of the
general form § =5 .[ RdAV , but in which R is replaced by the five-dimensional scalar
=R"x.

R(S)

Now, although there is no explicit source term in (8.1), the R’s component serves the role

of an implicit source term, because if one contrasts (8.1) with § = .[ (Z—IKR + Cytatter )dV , we see

that one can associate:

S(gMN)E TLIR(S)dV = J- (2_lch +#R55 )dV = j(ﬁR + Lotatter )dV . (3.2)

Then, employing R’s =—1bxg™J, =—LbxJ® from (7.7), we have now effectively defined:
£M“”e’ = Z_IKRSS = _éb;gSBJB = _éb;gMNaﬁqu = _ib;‘IS

:_Lb;—( By 41 SpF TR ) (8.3)
8k 8 Vi 4g K or

Referring to the old adage that R”, —1 J“/R is made of “marble” but 7#, is made of “wood”,

the defining of £,

atter

= ﬁRss allows us to fashion a 7%, or “marble” as well, because R’s is a

completely geometric object.
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Now, we can use variational principles to immediate calculate the energy tensor.

Specifically, the variation of the 5-dimensional metric tensor determinant g s, is specified by

1 dy-¢ 1 N ,
O -~ gwun - The 5-dimensional energy tensor may be defined from the matter

\/_ 2 §g MN

term £,, .. according to: (See [6]):

Ty == CUTE Y. & Eatarer- (8.4)
\/_ g 5g MN 5g MN

Then, we simply substitute the five-geometry-based £,, ., from (8.3) into the above, thus:

KTy = (688" )4 (i brg ™ 7). 55)

We note from (8.5) that the four-dimensional energy tensor &7, =—% g ﬂvb;gs BT, is
symmetric, T, =-T,, with & *4 =0, but that the fifth-dimensional components T, appear to be
non-symmetric, because 8°nJ,, # 0 mJ . Keep in mind, J° = g*®J . The transposed (8.5) is:

KT\ :(%b;é‘SMJN)_%gMN(%b;gSBJB)’ (8.6)

The mixed tensors formed from the above by raising M , respectively, are:

— My = (L bk NI M)+ L8 L brg ™, ), and 8.7)
kM = —(tbrg™7 )+ 1M (Lorg® ). (8.8)

This non-symmetry is further emphasized by the two different mixed tensors (8.7) and (8.8).

There are two possibilities: either the fifth-dimensional components Ty # T, really are and

ought to be non-symmetric, or we will need to take steps to make this tensor symmetric. We
defer this for the moment pending a bit more development.
First, despite the non-symmetry, the five-dimensional trace energy from (8.7) and (8.8)

turn out to be identical:

KT 5 =—3-1bKJ>. (8.9)

5~ 2
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Note that the % factors arises because with an extra dimension, 8*x =5. If we now consider the

Einstein equation in five dimensions as — kT~ = RMx —10 M\R,.,, then this contracts down to

(5)°

KT s, = %R(S) . Therefore, from (8.9) we deduce to for either (8.7) or (8.8):

R =—1bKl’, (8.10)

Finally, from the inverse Einstein equation, we deduce from (8.7) and (8.8) respectively, also

using the common (8.9), that the %% =1 factors cancel, all of the 0™y terms cancel, and we are

left with:
RMy = —kTMy +2- L MkT 5 = —Lbxd* I M, (8.11)
RNM = _KTNM +%'%5MNKT(5) = _%b;gSM‘IN ’ (8.12)

In retrospect, (8.11) and (8.12) could have been gleaned directly from (8.7) and (8.8),
which were written suggestively for that very reason. However, it is useful to confirm that this
works via the use of the inverse field equation, even with the extra dimension. Lowering the

upper indexes in the above, we obtain the respective covariant:

Ry =—1bxd°nJ (8.13)
Ry =—1bx°mJ (8.14)

which also in non-symmetric in the fifth-dimensional components R, # Ry, just like the

energy tensor, contrast (8.5). However, what we also deduce from either (8.13) or (8.14) that the

covariant curvature tensor in four spacetime dimensions is:

R, =R, =—1bK6"J,=—1bK6" ], =0, (8.10)

thatis: R, =0. The &°~ which first made its appearance in (8.3) and (8.5), is effectively a
“screen factor” which shuts all four-dimensional components of the covariant Ricci tensor R,

down to zero, and leaves a four-dimensional vacuum under the five-dimensional variation (8.4).

Although R/, =0, this is not so for 7, , because by (8.5) or (8.6) and (7.8):

uv
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KT, = KT, =—Lbkg,J* =—tbrg,, (67, + 8" LbkF7F, ), 8.11)

v Vi

Although non-zero, this tensor is symmetric in four dimensions.

Finally, we set out at the beginning of this section to deduce the four-dimensional Ricci
scalar R. Combining (7.7) with (8.8) yields R, = R+ R’s = R—+bxg™J, =—Lbkg™J,, ie.

R=0. (8.12)

More directly, this also comes from R = 0, (8.10). However, the ordinary, four-dimensional
trace energy is not zero, but from (8.11), is:

KT = —Lbi® ==L bilg™ 7, + g ¥ LbxFF,,). (8.13)

The derivation in this section made use of a five-dimensional variation, i.e., a variation
using o™ . In section 10, we shall see how a four-dimensional variation dg*” leads to the

Maxwell stress energy tensor. But first, we pause to examine the non-symmetry of the fifth-

dimensional component of the Ricci tensor, Ry # Ry, and the energy tensor 75y # Ty .

9. A Non-Symmetry Ricci Tensor for the Fifth-Dimensional Components?

What are we to make of the fact that R, # Ry, and Ty # T in section 8 above? Itis
helpful to directly examine the definition of the Riemann tensor (6.1):

Ry = R ma = —TBma + T%sam + Tpal* sm — T pml 54, .1

and the reverse-indexed:

Ry = R*a =—T*mpa + T map + T val s — T vpl M54, 9.2)

The first and fourth terms are clearly identical, because s ="sg. The third terms are also

identical if one renames indexes. However, the second terms are not necessarily the same,

I Bam # M mas, and specifically:

Maam =18 u (gAB,A T 8aa8 ~ 8Baa )+%gAA (gAB,A,M T 8aapMm ™ gBA,A,M) » and 9.3)

Myas = 3 gAAvB (gAM,A t8aam— gMA,A)"‘%gAA (gAM,A,B t 8aamp ~ 8Mans )’ 9.4)
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which, as a general rule, are not by identity, the same. If they are the same, it has to be because
of particular constraints on the g,,,. But as a general rule, it is possible to entertain field
equations, i.e., Ricci tensors and energy tensors which are not transposition symmetric, even
when the T"ap =T"pa and g,; = gp, -

This possibility has long been known, and is the precise problem that Einstein pointed out
in [15], see his contrast of equations (4a) and (4b). It has also been noted that “starting with a
general (though still symmetric) connection allowed Eddington — and Einstein following him in
1923 — to obtain a non-symmetric Ricci tensor, the antisymmetric part of which could then be
taken as a representation of the (antisymmetric) electromagnetic field tensor.” [16] Given the
foregoing, as well as the fact that although non-symmetric in five dimensions, the four-

dimensional energy tensor and Ricci tensor (8.11) and (8.10) retain their 7, =T,, and R, =R,
transposition symmetry, we shall accept the non-symmetric Rsy # Ry and Ts # Ty as is, and
not attempt to make these symmetric in the N5 indexes. That is, we shall take R,y # Ry and
T # Tys uncovered in the previous section as an indication that in nature, wherein Maxwell’s

electric charge source equation is effectively represented along those fifth-dimensional
components, (see sections 6 and 7) the fifth-dimensional components of R, and Ty, are non-
symmetric.

Therefore, we return to (8.9), which we redefine in the opposite manner as before,

reversing M and N, as follows:

Ry =—1bxd°nJ, (9.5)

We do this so as to be consistent with the results in section 6. Thus, from (9.5) we find, just as in

(6.6) and (6.7), respectively, that:

Ry =—1bKdsJ 3 =—L1bKl, 9:6)
Ry =—1bK8°sJ, =—LbxJ;. (9.7)
However:

Ryy =—1bK6°3J5 =0, (9.8)
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“which demonstrates explicitly the non-symmetric character of Ry # Ry. The entire fifth
“column” Ry, = —%b;(J 50 s ): —%b;(J ﬁ,%b;F Ume) of the covariant Ricci tensor contains the
Maxwell source charge current density J, transforming as part of a five-vector with a F “F_.

term, while the fifth “row” R, ;, except for Rss, is zero. Combined with R, =0 from (8.10),
we may summarize that R, = —%b;.l v Ry, =0. In effect, the covariant (lower index) Ricci

tensor contains a single column five-vector R, = —%b%]  » and all other components R,;, =0

Zero.
As we shall now see, allowing the Ricci and energy tensors to stay non-symmetric in this
way, will validate itself in the next section by leading to the Maxwell stress-energy tensor, which

we take to be a point of contact between theory and settled empirical observation.

10. Derivation of the Maxwell Stress-Energy Tensor, using a Four-Dimensional Variation

In section 8, we derived the energy tensor based on the variational calculation (8.4), in
five dimensions, i.e., by the variation dg™ . Let us repeat this same calculation, but in a slightly
different way.

In section 8, we used (8.3) in the form of £,, —8—1,(b;g5BJB = —éb;gMNé'SMJN ,

atter ~

because that gave us a contravariant g™ against which to obtain the five-dimensional variation

oL

e /08 . Let us instead, here, use the very last term in (8.3) as £,,

atter °

writing this as:

S =2 R's == biclg ™), + 1 g"bkF 7 F, ) =~ bl 6%, ++ ¢ g™ bKF, F,,).(10.1)

Matter

It is important to observe that the term g°*J 5 1s only summed over four spacetime indexes. The

fifth term, g”J, = %gssb;F‘”Fm , see, e.g., (6.8). For consistency with the non-symmetric (9.5),

we employ gsﬁ.lﬁ = g""6°vJ, rather than gsﬁ.lﬁ = g""8°,J,. By virtue of this separation, in

MN

which we can only introduce g“" and not g™ as in section 8, we can only take a four-

dimensional variation OF /0g"" , which, in contrast to (8.4), is now given by:

Matter

T =_ 2 a(\/gegMatter) — _2 5£Matter £Matter X

14 v V+gl/
ST PEa

(10.2)
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Substituting from (10.1) then yields:

T = e bK{8° 0, 4 8 BKF, F, ) g kbl + 1 b F,,). (103

Now, the non-symmetry of sections 8 and 9 comes into play, and this will yield the Maxwell
tensor. Because &°, =0, the first term drops out and the above reduces to:

KT/IV = %b;(%gssb;FﬂTFw )_%gﬂv %b;(gw‘]ﬁ +%g55b;F°'TFO_T)_ (104)

Note that this covariant (lower index) four-dimensional tensor is symmetric, and that we would
arrive at an energy tensor which is identical if (10.3) contained a §°,J, rather than &°,J «- Once

again, the screen factor 0%, =0 is at work.

In mixed form, starting from (10.3), there are two energy tensors to be found. If we raise

the u index in (10.3), the first term becomes &°vJ* =0 and we obtain:

—KT*, =—Lbxlt g bKF*F, )+ 6 Lbrlg* ] , +1 ¢ *bKFF,,). (10.5)

with this first term still screened out. However, if we transpose (10.3) and then raise the u

index, the first term becomes gs" J,, and this term does not drop out, i.e.,

— KT, =—Lblg™J, +1 g bKF*F, )+18," Lbrlg ], + 1 g “bKFF,,). (10.6)

So, there are two mixed tensors to consider, and this time, unlike in section 8, these each yield

different four-dimensional energy tensors. Contrasting (10.5) and (10.6), we see that 5°, =0
has effectively “broken” a symmetry that is apparent in (10.6), but “hidden” in (10.5). At this

time, we focus on (10.5), because, as we shall now see, this is the Maxwell stress-energy tensor
T, = —(F “F, —40"F"F, ), before reduction into this more-recognizable form.
Purposely leaving constant factors separated, the trace equation of (10.5) is then:

KT =R=—1br(2g*J , +1 g"bKFF, ). (10.7)

and so, via the inverse equation R, =—xT*, +16*/&T , from (10.5) and (10.7):

Ry =—1bilt g "bxF#F,, )+ 1 6%, Lbxl-3¢" , ~ 1 g"bkF7F, ). (10.8)
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Note that here, traceable to the screened term, lost via 8, =0, that one cannot simply glean R*,

from (10.5) as we were able to for (8.9). It was necessary to use the full inverse field equation

R*, =—xT*, + 8", kT . Now, we take the trace of (10.8) to obtain:

KT = R=—31bx(2g 7, + 1 g bkFF, ). (10.9)

Interestingly, this does not look to be the same as the trace in (10.7), yet these are the same. This
means that a further relationship must subsist, and if we look closely, (10.9) is the same as
(10.7), multiplied by a factor of 3. If x =3x, then x =0, so this is an indication that the trace
kT = R =0, which is characteristic of Maxwell’s tensor.

So, setting (10.7) equal to (10.9), we obtain:

R==21bxg” ], - Lo\l g¥bkFTF_|=-61bkg’J, —3Lbkll g™ bkFF, ), (10.10)
4 B4 4 or 4 yi) 4 4 or

and we find after reducing, that:

g%, ==L g"bkFTF,,). (10.11)

Now, we return to the energy tensor (10.5) and shift some terms to rewrite this as:

AKT*, = bil\L g¥bkF*F, )-1 5% biclk gSbkF o F_ )-L 5% bxcg™ T ,. (10.12)
4 vr 2 4 or 2 B

Then, we substitute g**J 5 from (10.11) into (10.12), and do some further rearranging, including

making use of ;2 =2k /fic, to obtain:

126_1(2 T, Z%hCTﬂv = gSS(FﬂTFw _ié‘ﬂ"F(ﬂij’ (1013)
b 'k

If we now set i=c =1 as well as:

b*=8 and g% =-1, (10.14)

then (10.13) now reduces, rather fortuitously, to the Maxwell stress-energy tensor:

T* sawser =—(F*°F,, —L5*,F”F, ), (10.15)

in the Heaviside-Lorentz units that we have been employing from the outset. The factor b

which we have employed all along is now determined to be b° =8. (Though we now know
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b =22, we will often retain b in our equations for simpler appearance and manipulation, only
substituting b> =8 when b becomes squared.) Further, because we have deduced that g*° =—1

we no longer need to straddle between a timelike and a spacelike fifth dimension: we have
deduced that the fifth dimension must be spacelike. Also, despite the five-dimensional non-
symmetry that we started with, the net result is still a symmetric tensor in four-dimensions. The
stress-energy tensor is an important result, because this tensor is underpinned by extensive
empirical evidence.

We can then also derive the mixed Ricci tensor corresponding to the stress-energy

(10.15). We start with (10.8), substitute (10.11), and reduce, to obtain:

16R*, =0k (¢PF*F,, )+ 156" b°x (¢ FF,.). (10.16)

Clearly, this is also traceless, R =0, as it should be. Further use of ;2 =2x/hc with h=c=1,

and b* =8 and g> =-1 from (10.14), then reduces to:

R, =«(F*F,_-15",F"F,), (10.17)

which is summarized by the traceless field equation — xT*, = R, , as expected.

Finally, in being able to derive the traceless equation (10.15) which among many things
tells us that electromagnetic energy traceless 7,,, ., =0 propagates at the speed of light, we
have solved the essential riddle which concerned Einstein in [17], see equations (1) versus (1a)
and (3) therein, which was to find a compatibility — x7*, = R*, —1 6"/ R which contains a non-
zero scalar trace, and (10.15) and (10.17) above which are scalar-free. More fundamentally,
since (10.15) was derived by rigorously applying the field equation —x7*, = R*, =10 R , we
have demonstrated that Einstein’s equation, which one ordinarily applies to trace matter which

can be placed at rest, is also fully compatible with, and is indeed the foundation for, the energy

tensor of traceless, luminous electromagnetic radiation.

11. The Energy Tensor of Trace Matter
One of the benefits of a non-symmetric Ricci curvature tensor R, = —%b%] v Ry, =0

is that there are not one, but two energy tensors inherent in (10.3). We have seen that one of
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these tensors is the Maxwell tensor (10.15) of traceless, luminous radiation, which originates in
(10.5). Now, let’s examine the other energy tensor (10.6), which is the mixed tensor that

emerges after one transposes the 4,V indexes in (10.3) before raising the # index, particularly
for the &°J, term.

From (10.6), the trace equation is:

KT = R=—1blg* ], +1 g bKFF,,). (11.1)

Contrasting, we see that (10.7) has a factor of 2 in front of g**J 5 Which does not appear in
(11.1). This is due to the screen term &°vJ .- Next, we apply the inverse field equation
R/ =—«T," +16, kT, using (10.6) and (11.1), to yield:

R* =—Lbxlg™J, +1 g bxF*F,.). (11.2)

v

Here, it is clear that we could have gleaned R,“ from (10.6), and this is because the symmetry

was not broken by the &°» =0 screen factor as it was for the Maxwell tensor (10.15). This
means we expect there to be non-zero trace matter in the 7, of (10.6). Taking the trace directly
from (11.2) yields:

KT =R=—1blg" ), +1 ¢ bkFF,,), (11.3)

which is now identical to (11.1).

and employ this in

or

Now, we simply turn back to (10.11), gsﬁjﬁ =L g®bkFF,
(10.6) in two alternative ways: so as to eliminate g**J 4> and so as to eliminate F”F,, . The
first result, combining (10.6) and (10.11), is: gSﬁJﬁ = —%gSSbEF‘”Fm

KT == bk g5 (FF, —18,"F7F, )~ Lbxg™J, . (11.4)

and the second, equivalent result is:

KT = —4brlg™T, +18," ¢ )~ LK g F . (11.5)

Applying further reduction using x =2K/he with h=c=1 ,and b° =8 and g” =—1, we find:
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KT =—x{F"F, 18 FF )+ 2 kg™ ], = kT" maower + 2 xg™J, , and (11.6)

14 T

KT, =2oclg® 0, +18,"¢°00 ;) - kFHF,.. (11.7)

v 2

which, again, are alternative, equivalent expressions for the same energy tensor. The traces may

be deduced from either of the above, or from (11.1) / (11.3), and expressed in various ways via

(10.11), g**J 5="% ¢”bkF °"F_ . The simplest expressions, however, are solely in terms of

either g**J s or F7F_, and these are:

or?

KT =R=1xF"F, =2xg"J, (11.8)

The energy tensor (11.6) and (11.7), T, = T* tracemarer thereby appears to be the energy
tensor for non-luminous trace matter, expressed in terms of the electrodynamic entities F*" and
J,, and it is related to Maxwell’s tensor by &T*yracesaner = KT "y saxwens +2 kg J . This all

arises, once again, out of the fifth-dimensional non-symmetry of R,,,, summarized by

Rys =—1bkJ ., Ry, =0, or, slightly more expanded, by Ry = —%b;JM . R, =0,R,, =0,
and it works its way onto the usual four dimensions of spacetime via the term &°vJ , 1 (10.3),
which is symmetric as written, but yields two different mixed tensors depending on whether one
raises the 4 index from &6°.J, into &°,J* =0, or from &°,J, into g**J, #0. In this subtle

but important non-symmetry, luminous massless electromagnetic radiation traveling at the speed

of light, is separated from the trace matter which has a mass and can be placed at rest.

12. Relation between the Electrodynamic Vector and Gravitational Tensor Potentials

We now formally introduce the four-vector potential A* = (g, AL A, LA, ), related to the
field strength tensor according to F*" = A*" — A" = A*" — A" where, as is well-known, the
covariant derivatives become ordinary derivatives in the particular combination used to form
F*. Introducing A” is desirable and indeed required, for as Witten points out, ([18] at pg. 28)

and as is very-well known, the vector potential A” is essential to the quantum mechanical

treatment of electromagnetism. So far, we have restricted ourselves strictly to classical
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electrodynamics and classical gravitation, based on five-dimensional Riemannian geometry.

With the introduction of the vector potential A*, we will also venture a tentative, introductory
foray into the quantum world, viewed through the action-based path integral which makes use of
Gaussian integrals to find invariant amplitudes, rather than through the canonical approach.

Once again, we start with (5.1), written out using with gy ;=0 from (5.6), as:

%bK‘FMT =I"rs :%gMA(gAT,s T 8&sar _gTS,A):%gMA(gSA,T _gST,A)' (12.1)

It is helpful to lower the indexes in field strength tensor and connect this to the covariant vector

potentials A, generalized into 5-dimensions as Ay via Fyp = Ay — Ay = Ap 1 — Ay, as such:

%bK(AE;T - AT;):): TbKkFy = 5bkg Flr=5808™" (gSA,T ~ 851 ): %(gS):,T - gST,E)' (12.2)
The relationship %b;FZT = %b;(AZ;T - Apy )= %(gsy_,T - gsm) expresses clearly, the
antisymmetry of F;; in terms of the non-zero connection terms %(gsz,T - gST,E) involving the

gravitational potential. Other than the constant factors included above, (12.2) is identical to the
equation between (6) and (7) in Klein’s [2]. Of particular interest, is that we may extract from

(12.2), the relation:

%b;A):;T =381 = %_hsz,T ’ (12.3)
using also gy = Mun +;hMN for the gravitational potential energy h,,, . If one forms
A;.r — Ary from (12.3) and then renames indexes and uses g, = gy > On€ arrives back at

(12.2). So (12.3) is just the form of equation (12.2) most directly relating the gravitational
potentials to the electrodynamic potentials.

Importantly, we have not removed the covariant derivative from A in (12.3), via
Fop=A;p —Apy =A;p — Apy. Thereason is that in (12.3), A;.; is considered separated from
— A , and the covariant derivatives do not become ordinary unless and until one forms the
combination Fy; = Ay — Ay = Ay — Apy. When the terms are separated as in (12.3), the

covariant derivatives must be left intact. This means, for example, that Klein’s equation for the

potential in (8) of [2], which in the notations employed here would be g, = g;sfA,, with [
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being the constant from Klein, must be regarded as only an approximate relationship, in the

linear approximation of gravitational theory in which the covariant derivative is approximately
equal to the ordinary derivative, i.e., Ayp = Ay 1.
Equation (12.3) makes perfect sense classically: after all, the oft-employed

sy = %b;F My of (5.1) is simply a first order differential equation between the vector potential

A* and the gravitational field 2*", and each is a dynamical field. Equation (12.3) above merely
states that differential equation explicitly. But quantum mechanically, (12.3) raises questions,
because we are talking about a relationship between a vector potential comprising spin-1
photons, and a tensor potential comprising spin-2 gravitons. So, we do need to come to better
terms with what (12.3) implies quantum mechanically.

Equation (12.3) is a first order differential equations which tells us up to a constant

factor, that the covariant derivative of the electrodynamic potential A, is equal to the ordinary
derivative of the gravitational potential A, . In the weak field limit / linear approximation,
where covariant derivatives become approximately equal to ordinary derivatives, we have

3 8se1 = 3bKAs 1 = ;DKA; 1, and so, integrating based on this linear approximation, we obtain:

bKA, . (12.4)

Y

85z =

Keep in mind, (12.3) is exact and non-linear; (12.4) only applies to the weak-field, linear

approximation Ay = A; ;. Itis (12.4) which, if turned into an equality rather than an
approximation, is equivalent with Klein’s (8) of [2], with Klein’s aff = g, = %b;
Now, the reader will recall that the term g*J ; and J° = g**J; has shown up repeatedly

throughout many of the prior equations, going all the way back to (7.7), and most recently, in the
energy tensor (10.3) which later turned into the Maxwell stress-energy tensor, via the “keystone”
relationship (10.11) which enabled us to uncover the Maxwell tensor. This term is also an
integral part of the trace matter tensors (11.6), (11.7). But in equation (12.4), g., is in lower-
index (covariant) form. It is therefore necessary to obtain a suitable contravariant expression for

g’". This is not a trivial exercise, particularly raising the “5” index, and it needs to be done
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carefully. This is so we can then obtain a suitable contravariant expression for g°® which is akin
to (12.4), so that this can be employed in the various equations where g® or g°/ appear.

To properly raise (12.4), we first raise the free index in (12.4) to write 552 = %b;AZ .
Next, we write g™ = g™*¢ g . take the M =5 component, and use 55 ~LbxA" to obtain:
g =g e =8 e + 87 8 = 8776 e + 476 = g8 + g7 SbrAY . (125)

We now separate this out into:

Sv

g = g% s+ g  LbrkA = g* + g% LbKkA", and (12.6)
g7 = g8+ g  LbkA’ = g™ LbhKA®. (12.7)
The latter (12.7) reduces to 1= %b;AS . Since k= w/167zG/ i’ and the Planck energy

E, =+hc’/G , and also using b* =8 from (10.14), we may restate (12.7) as:

A’ =1 2E,. (12.8)

Ny

Apparently, the fifth component of A™ has a huge energy, on the scale of the Planck vacuum.

It is a little trickier to reduce (12.6), because g =g +g” %b;A" reduces to
g7 %b;A" =~ (0, which is another way of saying that A" <<< E,, i.e., that in the linear
approximation, the spacetime part of the electromagnetic vector potential, A", has an energy
much less than the Planck energy. That is obvious, by definition. Let’s instead make additional
use of g™ =™ + k™Y, and especially, g% =7 + xkh® = kh® , and also g% =—1 from
(10.14) to rewrite (12.6) as:
g = xlh®™ —L1bA”). (12.9)

This yields a workable expression, and we find that the fifth component 4" of the gravitational

potential is added to A” in this linear approximation. Now, let’s match apples to apples, or, in

this case, particles to particles.
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To do this, we make further use of 41" = ¢*" —1n*"¢ which in the linear approximation
has the gravitational field equation —x7T*" =9 _,0°¢"" with gauge condition d ,¢*" =0.
Quantum-mechanically, ¢ is of course representative of spin-2 gravitons, and we know that

A" is representative of a spin-1 photon. These are what need to be matched together. We

generalize to five dimensions and 7" — g™ ,ie., B™ =™ -3 g™, from which we may

z

deduce the trace h=h"s =—3 ¢ = —3 ¢ and inverse equation ¢

MN _ p MN _
> =h

1¢""h. Because
g55 =7]55 +xh¥ =—1 and 7]55 =1, we deduce that h*° =0. However,

¢” =h” —Lg®h=1h=-1¢. Thisis not necessarily equal to zero, because
—39=h=gy,h"" =g, h" +2g,h” + g, ;h” and only the final term, gs;h> =0, necessarily.

From the foregoing, ™ = ¢ —1 g”¢. Placed into (12.9), this becomes:

gsz;.(¢5v _%g5v¢_%bAv). (12.10)

which can rearranged into:
. Sv _1 Av
e K Lo | (12.11)
1+ k¢

This is the contravariant counterpart of g, = %b;Av based on (12.4), and it clearly has a much

more complex structure than its covariant cousin in (12.4). Note, in (12.11), ;gz) = 4\/;¢/ E,,so

the scalar ¢ comes into play when its energy is close to the Planck energy. This suggests that
g”" decomposes into a vector potential, interpreted quantum mechanically as a spin-1 photon,
together with the ¢*” components of a gravitational wave, interpreted as a spin-2 graviton, and is
also re-scaled by the scalar factor 1+%;¢ :

Therefore, whenever there appears a term g°*.J 4> such as in (7.7) for R’s = —ibEJ > and

elsewhere, (12.11) tells is that in the linear gravitational approximation, where A;.; = A; ; and so

the approximation (12.4) applies, g = %bEAZ, which is Klein’s equation (8), that:

—( #F —LpA”
g%, zx(‘”%}ﬁ. (12.12)
1+EK-¢
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To write a path integral, we need an action, and to have an action, we need a Lagrangian

density to be integrated over the four-space S (A”)z I LocpdV . Thus, we now use the foregoing

to obtain the Lagrangian density of Quantum Electrodynamics, £,., = — AP Jy—3F7F,

O'T’

geometric foundation.

13. The QED Lagrangian Density, and Non-Linear Electrodynamics
To arrive at £, =—A” Jy—3F7F,

or ?

let’s return to the Maxwell tensor of (10.15),
T = —(F‘”FW -10"F7F_, ), for which the Ricci scalar R =0. Let us also return to the

“keystone” relationship (10.11), which we rewrite as g**J 5 —%b;F F_=0 with g”° =-1.

Because we have written (10.11) so as to be equal to zero, we can multiply through by any
constant we choose. We will choose to use (10.7), and substitute (12.12) into this, recognizing
that the overall constant can be chosen at will. Thus, in the linear approximation where

A;.r = A; 1 obtain:

_1 bA’H
0=xT =R=-1bk (ngﬂ.] +1 gSSbKF‘”F =~ br{ K( . jj +1 ¢™bKFF, J .(13.1)
+1 K‘
We then rewrite this with b =8 and g% =—1 and 2x =k with i=c=1. With some term
separation, and multiplying through by —1/4x , we obtain:

55 Vi
O=—L1T=—LR=232 4 —\J, - A — |J,—LF7F__. (13.2)
4 4K 2 1+%K‘¢ 1+%K‘¢ B 4 or

Thus far, our linear approximation rests entirely on A;.; = A; . Let’s then add one final
element to the linear approximation: the more customary g, =7 - Then, from
=™ + k™, we obtain A™ =0, thus 2 =~0. Then, " =™ —1 g™ =0, and ¢ =~0.

Using all of this allows us to further reduce (13.2) to

5B B
0=—1T=—LR= f[ 9 j] [ A_jJﬁ—%F‘”F ~—APJ,—LF7F, =$,,. (133)

1
) " 1+ ! k¢ 1+ kg
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In the linear approximation, and in the term g>*J 5 —éb;F “F_ =0, we have found the

Lagrangian density of QED.

Now, let’s work in the opposite direction, to find the non-linear expression for £,.,. If

we summarize the results of (13.1) through (13.3), what we have found is that in the linear

gravitational approximation:

0=—17 =—LR=Lbxl2g™ ], +1 g bKFF, )~ —APJ , =L F7F, = .0, . (13.4)

4 16k

Now, a fundamental question arises. Equation (13.4) says that in the linear

approximation, £,., =0, and that £,., = ~APJ 5~ F 7 F,. . But, might it really be the other
way around? Might the real situation be that £,.,, =0, always, for both linear and non-linear
theory, and that in the linear approximation, 0= £,., = ~APJ 5~ F7F, 7 Inother words,
might it be that in non-linear gravitational and electrodynamic theory, £,., always remains
equal to zero, and that in the non-linear theory, the particular combination of fields given by
—APJ 5~ F7F,, grows to be further and further removed from zero, and thus, from £, ?
After all, in non-linear theory, not only do we have to back out the g,, =7, We used to get to
(13.3), but we have to back out the A;.; = A; ;. approximation which we used to get to (12.4),
and therefore, in the non-linear theory, can only use the first order differential equation (12.3):

%b;A):;T =385 :%;hSZ,T :%;(¢52 —%gsz(ﬁ);- (13.5)

The benefit of (13.4), then, is that it shows where the non-linear electrodynamic theory meets up

with the linear theory of our experimental experience.

Let us suppose this is so, and that our experience with £,., =—A"J s~ F7F, is

precisely because the electrodynamic situations we deal with experimentally are in fact so weak,

when contrasted with the Planck scales where the non-linear aspects of gravitational theory

become most stark. In other words, — APJ 5 —%F “F__ =0 in relation to the Planck scale, and so
we have come to associate this term with £,., =0. Itis not £,,, =0 which changes with

and this term

or?

strong, non-linear fields: it is the term combination — APJ P —+F”F
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combination grows further and further away from the zero which is §,.,. If this is so, we
should rewrite (13.4) as:

Spep =0=5bxg™ 1, ~L F7F, =—A"] ,—LFF

4 ot

(13.6)

with g* =—1, where the final term applies in the linear approximation — A”J s~ F7F, —0.

The use of T and R in (13.1) through (13.4), therefore, has no special significance, other than
as a reference against which to arrive at the correct constant factors relating the two sides of the

= in (13.6).

14. Toward a Non-Linear Quantum Field Theory of QED

The linear £,., =—;F”F, — APJ s 1s what is used in the action, and then in the path
integral, to arrive via Gaussian integration and the invariant amplitude for QED. Specifically,
one takes £,., =—;F7F, — AP 5> turns it into (now we can use ordinary derivatives because
of the antisymmetric field combination) £, ~—19°A(d,A, —9,A4,)— A”J 4 » puts this into an

action S(A)= I£QCDd *x, and performs integration by parts to convert this over to

S(A)= jd“xﬁi = jd“x{%Av [B"a(,g‘“’ —a”a“]Aﬂ - AVJ”}. Then, placed into the exponent of a

. . i3 1ia(02 )A+i 2z’ ~Lie?)’
Gaussian integral of the “schematic” form jd * xe* Ao i _ (d(—i([a)—z) e’ ek , we lay the
et

—oo

foundation for computing the invariant amplitude via the path integral Z = J-DAeiS(A) =",

But with the non-linear (13.6) in hand, we should be able to do a similar thing based on

the gravitational field g,,, (really ¢,,, ) rather than the electromagnetic field potential A,,, and
based on the source energy tensor 7,,, rather than the source vector current J,,. We shall not

attempt the full calculation of this, but will develop the first step.

Starting with (13.6), let us first write F“°F,_ in terms only of the gravitational potentials
Zan - Weuse TMsy = %b;F My from (5.1) together with the Christoffels to write:

- Kf:o_fFo-r =I5 "s50 :%gmgrﬂ (gSa,z' - gST,a)(gSﬂ,O' - gSa,ﬂ):%g(maﬁgSa[aagSﬁ _aﬁgSG]’ (14.1)
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using also b* =8 and 2k = % with i=c=1. Contrast the linear term d°A° (0,A, —0_A ) with

the non-linear term g°*9°g.,[0.g., —9,g,] which can be formed from (14.1). The goal, after
insertion into an action and exponentiation, and following integration by parts, is to form this

into the schematic term g(a2 )g for the Gaussian integral underlying the path integral.

Then, from (13.6), let’s focus on the term gsﬁ J 5 There, we want to convert J 5 over
into the pertinent components for the energy tensor. From (9.6), we have R = —ib;J 5> and
from (7.7) and (8.12) we have R, =R’s = —%b;gSBJB . So, from Einstein’s equation

generalized to five dimensions, we may write:

—KTys =Ry —+ 8 45Ris, =—1bKJ 4 +§gﬁ5bKJS. (14.2)

Then, we multiply everything in the above through by — g**, to obtain:

kg Py =1bg™’J ;Lg% g bkl =Lbrg™ ] (14.3)

where the term égsﬁ g ﬁsb;J > drops out entirely by virtue of the null relationship (5.9),

gfngS = O N
Now, we return to (13.6), and substituting from (14.1) and (14.3), we may finally write:

Socp =0=1kbig™ ], —LFF,_ =1g"'T, +Lg"”’aﬁg5a[aag5,; —aﬁgw]z—AﬂJﬁ -3F7F, .(14.3)

o 8k

This expresses the exact £,.,, completely in terms of g, and 7\, , and, of special interest, it

appears possible that this can be used in an action, placed into a Gaussian integral, integrated by

parts, and in contrast to %A(az )A + JA, formed instead into the schematic %g(az )g +Tg , leading
to a path integral for an invariant amplitude which, in contrast to W (J)= —1J (82 )_l J , would

then take on the form W (T')= —%T(az )_IT . To summarize the key point of (14.3): the exact
QED Lagrangian density is:
KSocp =0 :%gsﬁKT/}s +égmaﬁg5a[aagsﬁ _aﬁgw]’ (14.4)

and in the linear approximation, this approaches — A”J s F7F,,.
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15. A Possible Kaluza-Klein Experiment
At this juncture, we have enough information to propose an experiment to validate or
falsify some of the results derived thus far. We turn for this purpose to the stress energy tensor

of matter (11.6), which we raise into contravariant notation as follows:

K‘Iﬂ/ﬂ :—K'(F/”va —%gﬂvFo-TFo.f)'i'g;gsﬂjv = ﬂﬂVMaxwell +%;’g5ﬂfv . (151)

The Maxwell tensor T*" yawen =T ™ maxwen 18, of course, a symmetric tensor. But the added trace

matter term g>“J" is not necessarily symmetric, that is, there is no a priori reason why g>*J"

must be equal to g°J*. The origin of this non-symmetry was discussed earlier in Section 9.
With an eye toward conducting an experiment, let us now consider (15.1) in the linear

approximation of (13.6) where £,., ~—A”J 5 — 1 F 7 F,. . In the linear approximation, as used

—( ¢ — LbA* —
to reach (13.3), (12.11) reduces to g** = k] =——2— |= -1 xbA*, and (15.1) becomes:
1+ k¢
T% =~ —(F¥F" —Lg" FF,_)=2J" A" = T* yuwwen —2J " A, (15.2)

_2 . . .
where we have also used b> =8 and 2x =k , and divided out x. The transpose of this non-
symmetric energy tensor is:

Tﬂv = _(FﬂTFVT _%gﬂVFOTFo'T)_ 2J'UAV = T'uvMaxwell - 2J'UAV ’ (153)

Now, it is known that a non-symmetric energy tensor, physically, is indicative of a non-

zero spin density. In particular, using (15.2) and (15.3), the non-symmetry of the energy tensor
is related to a non-zero spin density tensor S*** according to: [19]

S,uwz;a:Tﬂv_TVﬂ:_zjﬂAV +2JVA*. (154)

For such a non-symmetric tensor, the “energy flux” is not identical to the “momentum density, as
these differ by (15.4), for £ =0, v=k =1,2,3 and vice versa. If the spin density S*** =0, then

in this special case, (15.4) yields:
JHAY =TV A" (15.5)
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So, for $** =0, (15.3) may be written using (15.5) as the explicitly-symmetric tensor:

T ~~(F¥F". L g™ FoF, )= J" A" = J" A" = T* ymer = J " A = J" A" (15.6)

Now, let’s consider a experiment which is entirely classical. The 7% “Poynting”

components of (15.4), (15.6) represent the energy flux across a two-dimensional area, for a flux

of matter which we will take to be a stream of electrons, while the T*° components represent the
momentum density. The proposed experiment, then, will be to fire a stream of a very large
number of electrons thereby constituting an electron “wave,” and to detect the aggregate flux of
energy across a two-dimensional surface under various spin preparations, in precisely the same
manner that one might test the flow of luminous energy across a surface when using light waves
rather than electron waves. Specifically, we propose in test I to fire electrons without doing
anything to orient their spins, so that, statistically, the number of electrons flowing through the
flux surface with positive helicity is equal to the number with negative helicity and so the spin
density is zero, and (15.6) applies. In test II, we fire electrons, but apply a magnetic field before
detecting the flux, to ensure that all of the electrons are aligned to positive helicity. In this event,
the spin density, by design, is non-zero, and one of (15.2) or (15.3) will apply. In test III, we do
the same, but now apply the magnetic field to ensure that all of the electrons have negative

helicity, before detecting the flux.
In the linear approximation, we take g“" =n*", and so the Maxwell tensor part of (15.6)
is the usual:

TOKMaxwell :_FOTFkT =EXxB. (157)

uve

Therefore, for test I, where S =0, (15.6) applies and the Poynting vector is:

T% =T vawwers = J°A* —J*A° =ExB-pA—9J . (15.8)

where we employ the current density four-vector J* = (p, Jood . ): (p,J) and the vector
potential A* = ( ,AX,A);,AZ): (¢),A). Via (15.5), pA=¢J, for test I. Referring to (15.8), we

regard the term ¢J with the electrostatic current density J to contribute to the “energy flux” and

the term p A with the charge density o to contribute to the “momentum density,” that is, we
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use the four vector current density J#, rather than the vector potential A*, to establish whether

we are speaking of “flux” versus “density.”

In tests I and III, we note from (15.4), S*"%.o =-2J%A" +2J"A*  that for $*"* >0
(positive spin density), d,5“" >0, and so J"A* >J*A". For §*" <0 (negative spin density),
J"A* < J#A". Thus, we identify (15.2) with a positive, and (15.3) with a negative helicity
electron beam. Thus, in test II, the “energy flux” should be observed to be:

T % = T vawwers —2J"A° =ExB-2¢7J . (15.9)

and in test III, the “momentum density” should be observed to be:

T%m = T% vawen —2J°A* =ExB-2pA, (15.10)

If we orient the test so that the electrons are fired along the z axis, and detected to flow

through the x-y plane, then:

T® =—F"F*%-J°A*~J’A"=E B —-EB —pA —¢/_, (15.11)
T®u=~-F"F*—J°A*~J°A"=E B —E B, 2@/, and (15.12)
T®m~-F"F*:—J"A’-J’A’=E B —E B -2pA.. (15.13)

One may, if desired, use F*" = A" — A*" to reformulate the electromagnetic field terms into

potential terms, via E=-V@—0A/dt and B=V xA . With firing along the z-axis, this is
E =-0¢/dz—0A,/dt and B, =0A /dy—dA, /ox.

Validation (or falsification) of energy fluxes specified by (15.11) through (15.13) under
the various spin density preparations I, II and III, would then serve as a test of the trace matter

tensor (15.1), and the steps which were undertaken to derive this tensor in the first instance.
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