## Dear Friends:

I'd like to lay out a nifty little mathematical calculation which allows a "decomposition" of the intrinsic spin matrices $s^{i}=\frac{1}{2} \hbar \sigma^{i}$ to include the position and momentum operators $x^{i}, p^{i}$, $i=1,2,3$. To simplify matters, we will employ a Minkowski metric tensor with $\operatorname{diag}\left(\eta_{\mu \nu}\right)=(-1,+1,+1,+1)$ so that raising and lowering the space indexes $i=1,2,3$ is simple and at will, and does not entail any sign reversal.

We start with the general cross product for two three-vectors $\mathbf{A}$ and $\mathbf{B}$. Written in covariant (index) notation:

$$
\begin{equation*}
(\mathbf{A} \times \mathbf{B})_{i} \equiv \varepsilon_{i j k} A^{j} B^{k} \tag{1}
\end{equation*}
$$

One can easily confirm this by taking, for example, $(\mathbf{A} \times \mathbf{B})_{3} \equiv A^{1} B^{2}-A^{2} B^{1}$. Now, let's take the triple cross product $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$. We can apply (1) to itself using $(\mathbf{A} \times \mathbf{B})^{j} \equiv \varepsilon^{j m n} A_{m} B_{n}$, to write: $[(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}]_{i}=\varepsilon_{i j k}(\mathbf{A} \times \mathbf{B})^{j} C^{k}=\varepsilon_{i j k} \varepsilon^{j m n} A_{m} B_{n} C^{k}$.

The fact that the crossing of $\mathbf{A}$ and $\mathbf{B}$ takes precedence over crossing with $\mathbf{C}$ is retained in the fact that $A_{m} B_{n}$ sum with $\varepsilon^{j n n}$, while $C^{k}$ alone sums into $\varepsilon_{i j k}$.

Let us now expand (2) for the component equation for which $i=3$. The calculation is as such:

$$
\begin{align*}
& {[(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}]_{3}=\varepsilon_{3 j k} \varepsilon^{j m n} A_{m} B_{n} C^{k}} \\
& =\varepsilon_{312} \varepsilon^{123} A_{2} B_{3} C^{2}+\varepsilon_{312} \varepsilon^{132} A_{3} B_{2} C^{2}+\varepsilon_{321} \varepsilon^{231} A_{3} B_{1} C^{1}+\varepsilon_{321} \varepsilon^{213} A_{1} B_{3} C^{1} \\
& =A_{1} B_{3} C^{1}+A_{2} B_{3} C^{2}-A_{3} B_{1} C^{1}-A_{3} B_{2} C^{2}  \tag{3}\\
& =A_{1} B_{3} C^{1}+A_{2} B_{3} C^{2}+A_{3} B_{3} C^{3}-A_{3} B_{1} C^{1}-A_{3} B_{2} C^{2}-A_{3} B_{3} C^{3} \\
& =A_{1} B_{3} C^{1}+A_{2} B_{3} C^{2}+A_{3} B_{3} C^{3}-A_{3}(\mathbf{B} \cdot \mathbf{C})
\end{align*}
$$

where we have added $0=A_{3} B_{3} C^{3}-A_{3} B_{3} C^{3}$ to the fourth line. Now in the final line, we hit an impasse, because $B_{3}$ is sandwiched between the terms we would like to form into the other dot product $\mathbf{A} \cdot \mathbf{C}$. In order to complete the calculation, we must make an assumption that the $A_{i}$ commute with $B_{3}$, i.e., that $\left[A_{i}, B_{3}\right]=0$. For now, let us make this assumption.

Therefore, we carry out the commutation in (3), and continue along to write:

$$
\begin{align*}
& {[(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}]_{3}=\varepsilon_{3 j k} \varepsilon^{j m n} A_{m} B_{n} C^{k}=A_{1} B_{3} C^{1}+A_{2} B_{3} C^{2}+A_{3} B_{3} C^{3}-A_{3}(\mathbf{B} \cdot \mathbf{C}) .} \\
& =B_{3}(\mathbf{A} \cdot \mathbf{C})-A_{3}(\mathbf{B} \cdot \mathbf{C})=B_{3} A_{j} C^{j}-A_{3} B_{j} C^{j} \tag{4}
\end{align*}
$$

Generalizing fully, we may now write (4) in two equivalent ways as:
$\left\{\begin{array}{l}(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=-\mathbf{A}(\mathbf{B} \cdot \mathbf{C})+\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) \\ \varepsilon_{i j k} \varepsilon^{j m n} A_{m} B_{n} C^{k}=-A_{i} B_{j} C^{j}+B_{i} A_{j} C^{j} .\end{array}\right.$
The reader will observe the well-known formula for the cross product.
Now, let's take the cross product in which $\mathbf{A}=\mathbf{x}, \mathbf{B}=\mathbf{p}$ and $\mathbf{C}=\boldsymbol{\sigma}$, where $\mathbf{x}$ is the position operator about the center of mass, $\mathbf{p}$ is the momentum operator, and $\boldsymbol{\sigma}$ are the Pauli spin matrices. We also take into account the Heisenberg canonical commutation relationship between the position and momentum operators, that is, $\left\lfloor x_{\mu}, p_{\nu}\right\rfloor=i \hbar \delta_{\mu \nu}$. This means that we will have to be careful at the juncture between equations (3) and (4), because the position and momentum operators along the same dimension do not commute.

So, we return to (3) with $\mathbf{A}=\mathbf{x}, \mathbf{B}=\mathbf{p}$ and $\mathbf{C}=\boldsymbol{\sigma}$, to write:

$$
\begin{equation*}
[(\mathbf{x} \times \mathbf{p}) \times \boldsymbol{\sigma}]_{3}=\varepsilon_{3 j k} \varepsilon^{j m n} x_{m} p_{n} \sigma^{k}=x_{1} p_{3} \sigma^{1}+x_{2} p_{3} \sigma^{2}+x_{3} p_{3} \sigma^{3}-x_{3}(\mathbf{p} \cdot \boldsymbol{\sigma}) \tag{6}
\end{equation*}
$$

To take the next step, we want to place in $p_{3}$ front of the $x_{i}$. In so doing, we can commute $p_{3}$ with $x_{i}$ for $i=1,2$. But, for $i=3$, we must employ $x_{3} p_{3}=p_{3} x_{3}+i \hbar$. Therefore, (6) now becomes:

$$
\begin{align*}
& {[(\mathbf{x} \times \mathbf{p}) \times \boldsymbol{\sigma}]_{3}=\varepsilon_{3 j k} \varepsilon^{j m n} x_{m} p_{n} \sigma^{k}=p_{3} x_{1} \sigma^{1}+p_{3} x_{2} \sigma^{2}+\left(p_{3} x_{3}+i \hbar\right) \sigma^{3}-x_{3}(\mathbf{p} \cdot \boldsymbol{\sigma})} \\
& =p_{3}(\mathbf{x} \cdot \boldsymbol{\sigma})-x_{3}(\mathbf{p} \cdot \boldsymbol{\sigma})+i \hbar \sigma_{3}=p_{3} x_{j} \sigma^{j}-x_{3} p_{j} \sigma^{j}+i \hbar \sigma_{3} \tag{7}
\end{align*}
$$

lowering the index on $i \hbar \sigma^{3}$ with $\operatorname{diag}\left(\eta_{i j}\right)=(+1,+1,+1)$. Now all of a sudden, $i \hbar \sigma^{3}$ has made an unexpected appearance. Generalizing (7), we may write:

$$
\left\{\begin{array}{l}
{[(\mathbf{x} \times \mathbf{p}) \times \boldsymbol{\sigma}]=-\mathbf{x}(\mathbf{p} \cdot \boldsymbol{\sigma})+\mathbf{p}(\mathbf{x} \cdot \boldsymbol{\sigma})+i \hbar \boldsymbol{\sigma}}  \tag{8}\\
\varepsilon_{i j k} \varepsilon^{j m n} x_{m} p_{n} \sigma^{k}=-x_{i} p_{j} \sigma^{j}+p_{i} x_{j} \sigma^{j}+i \hbar \sigma_{i}
\end{array}\right.
$$

This is the also the well-known formula for the triple-cross product, but with an additional term $i \hbar \boldsymbol{\sigma}$ emerging from the canonical commutation relationship. In fact, moving terms, equation (8) gives us a way to decompose the intrinsic spin matrix so as to contain the position and momentum, and as we shall also see, orbital angular momentum operators.

First, we rewrite (8) as:

$$
\left\{\begin{array}{l}
i \hbar \mathbf{s}=[(\mathbf{x} \times \mathbf{p}) \times \mathbf{s}]+\mathbf{x}(\mathbf{p} \cdot \mathbf{s})-\mathbf{p}(\mathbf{x} \cdot \mathbf{s})  \tag{9}\\
i \hbar s_{i}=\varepsilon_{i j k} \varepsilon^{j m n} x_{m} p_{n} s^{k}+x_{i} p_{j} s^{j}-p_{i} x_{j} s^{j}
\end{array}\right.
$$

where we have multiplied through by $\frac{1}{2} \hbar$ and then set $s_{i} \equiv \frac{1}{2} \hbar \sigma_{i}$. This decomposes the intrinsic spin matrix into an expression involving itself, as well as the position and momentum operators.

Now, using the definition (1) but with $\mathbf{A}=\mathbf{x}$ and $\mathbf{B}=\mathbf{p}$, let's introduce the orbital angular momentum operator :
$\mathbf{l}^{j} \equiv(\mathbf{x} \times \mathbf{p})^{j} \equiv l^{j} \equiv \varepsilon^{j m n} x_{m} p_{n}$
It is easy to see, for example, that $l^{3}=x_{1} p_{2}-x_{2} p_{1}$. Using (10), we now rewrite (9) as:
$\left\{\begin{array}{l}i \hbar \mathbf{s}=(\mathbf{l} \times \mathbf{s})+\mathbf{x}(\mathbf{p} \cdot \mathbf{s})-\mathbf{p}(\mathbf{x} \cdot \mathbf{s}) \\ i \hbar s_{i}=\varepsilon_{i j k} l^{j} s^{k}+x_{i} p_{j} s^{j}-p_{i} x_{j} s^{j},\end{array}\right.$,
We see that part of this decomposition includes the cross-product $\mathbf{l} \times \mathbf{s}$ of the orbital angular momentum with the intrinsic spin. We may also multiply the lower equation (11) through by $\mathcal{E}^{m n i}$ and then employ the commutation relationship $\left\lfloor s^{m}, s^{n}\right\rfloor=i \hbar \mathcal{E}^{m n i} s_{i}$, to write:
$\left[s^{m}, s^{n}\right]=\mathcal{E}^{m n i} \varepsilon_{i j k} l^{j} s^{k}+\mathcal{E}^{m n i} x_{i} p_{j} s^{j}-\varepsilon^{m n i} p_{i} x_{j} s^{j}=l^{m} s^{n}+\mathcal{E}^{m n i} x_{i} p_{j} s^{j}-\mathcal{E}^{m n i} p_{i} x_{j} s^{j}$.
Note, we have also made use of $\varepsilon^{m n i} \varepsilon_{i j k}=\delta^{m n i}{ }_{i j k}$.
Equation (11) allows us to decompose the total spin $\mathbf{S}$ for a Dirac field $\psi$, as follows:

$$
\left\{\begin{array}{l}
\mathbf{S}=\int(\bar{\psi} \mathbf{s} \psi) d^{3} x=-\frac{i}{\hbar} \int(\bar{\psi}[(\mathbf{l} \times \mathbf{s})+\mathbf{x}(\mathbf{p} \cdot \mathbf{s})-\mathbf{p}(\mathbf{x} \cdot \mathbf{s})] \psi) d^{3} x  \tag{13}\\
S_{i}=\int\left(\bar{\psi} s_{i} \psi\right) d^{3} x=-\frac{i}{\hbar} \int\left(\bar{\psi}\left[\varepsilon_{i j k} l^{j} s^{k}+x_{i} p_{j} s^{j}-p_{i} x_{j} s^{j}\right] \psi\right) d^{3} x
\end{array}\right.
$$

See Ohanian, H., What is Spin, at http://jayryablon.wordpress.com/files/2008/04/ohanian-what-is-spin.pdf, equation (18).

Two questions: Does this seem correct? Has anybody seen this before?
Best regards,
Jay R. Yablon, April 18, 2008

